scispace - formally typeset
Search or ask a question

Showing papers on "Photoinhibition published in 2017"


Journal ArticleDOI
TL;DR: The results show that far-red light can increase the photosynthetic efficiency of shorter wavelength light that over-excites PSII and the stimulatory effect of far- red light increased asymptotically with increasing amounts ofFar-red.

130 citations


Journal ArticleDOI
TL;DR: It is suggested that adaptive responses to warming in phytoplankton could help to mitigate projected declines in aquatic net primary production by increasing rates of cellular net photosynthesis.
Abstract: Phytoplankton photosynthesis is a critical flux in the carbon cycle, accounting for approximately 40% of the carbon dioxide fixed globally on an annual basis and fuelling the productivity of aquatic food webs. However, rapid evolutionary responses of phytoplankton to warming remain largely unexplored, particularly outside the laboratory, where multiple selection pressures can modify adaptation to environmental change. Here, we use a decade-long experiment in outdoor mesocosms to investigate mechanisms of adaptation to warming (+4 °C above ambient temperature) in the green alga Chlamydomonas reinhardtii, in naturally assembled communities. Isolates from warmed mesocosms had higher optimal growth temperatures than their counterparts from ambient treatments. Consequently, warm-adapted isolates were stronger competitors at elevated temperature and experienced a decline in competitive fitness in ambient conditions, indicating adaptation to local thermal regimes. Higher competitive fitness in the warmed isolates was linked to greater photosynthetic capacity and reduced susceptibility to photoinhibition. These findings suggest that adaptive responses to warming in phytoplankton could help to mitigate projected declines in aquatic net primary production by increasing rates of cellular net photosynthesis. Isolates of the green alga Chlamydomonas reinhardtii adapted to a decade of chronic warming in outdoor mesocosms have higher competitive fitness than ambient controls, due to greater photosynthetic capacity and reduced susceptibility to photoinhibition

130 citations


Journal ArticleDOI
TL;DR: It is concluded that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation.
Abstract: Oxygenic photoautotrophs require mechanisms for rapidly matching the level of chlorophyll excited states from light harvesting with the rate of electron transport from water to carbon dioxide. These photoprotective reactions prevent formation of reactive excited states and photoinhibition. The fastest response to excess illumination is the so-called non-photochemical quenching which, in higher plants, requires the luminal pH sensor PsbS and other yet unidentified components of the photosystem II antenna. Both trimeric light-harvesting complex II (LHCII) and monomeric LHC proteins have been indicated as site(s) of the heat-dissipative reactions. Different mechanisms have been proposed: energy transfer to a lutein quencher in trimers, formation of a zeaxanthin radical cation in monomers. Here, we report on the construction of a mutant lacking all monomeric LHC proteins but retaining LHCII trimers. Its non-photochemical quenching induction rate was substantially slower with respect to the wild type. A carotenoid radical cation signal was detected in the wild type, although it was lost in the mutant. We conclude that non-photochemical quenching is catalysed by two independent mechanisms, with the fastest activated response catalysed within monomeric LHC proteins depending on both zeaxanthin and lutein and on the formation of a radical cation. Trimeric LHCII was responsible for the slowly activated quenching component whereas inclusion in supercomplexes was not required. This latter activity does not depend on lutein nor on charge transfer events, whereas zeaxanthin was essential.

127 citations


Journal ArticleDOI
TL;DR: The results showed that the photosynthetic performance of P. cruentum was severely impacted by nitrogen deficiency, leading to the inactivation of the oxygen-evolving complex (OEC) and decreased light energy conversion efficiency.
Abstract: Nitrogen is one of the most important nutrients needed for plants and algae to survive, and the photosynthetic ability of algae is related to nitrogen abundance. Red algae are unique photosynthetic eukaryotic organisms in the evolution of algae, as they contain phycobilisomes (PBSs) on their thylakoid membranes. In this report, the in vivo chlorophyll (Chl) a fluorescence kinetics of nitrogen-starved Porphyridium cruentum were analyzed to determine the effects of nitrogen deficiency on photosynthetic performance using a multi-color pulse amplitude modulation (PAM) chlorophyll fluorometer. Due to nitrogen starvation, the photochemical efficiency of PSII and the activity of PSII reaction centers (RCs) decreased, and photoinhibition of PSII occurred. The water-splitting system on the donor side of PSII was seriously impacted by nitrogen deficiency, leading to the inactivation of the oxygen-evolving complex (OEC) and decreased light energy conversion efficiency. In nitrogen-starved cells, a higher proportion of energy was used for photochemical reactions, and thermal dissipation was reduced, as shown by qP and qN. The ability of nitrogen-starved cells to tolerate and resist high photon flux densities was weakened. Our results showed that the photosynthetic performance of P. cruentum was severely impacted by nitrogen deficiency.

105 citations


Journal ArticleDOI
TL;DR: This work identifies HO• as being produced on both the oxidizing and reducing sides of the photosystem, and identifies a number of oxidatively modified D1 and D2 residues associated with formation of HO• at both the Mn4O5Ca cluster and the nonheme iron.
Abstract: The Photosystem II reaction center is vulnerable to photoinhibition. The D1 and D2 proteins, lying at the core of the photosystem, are susceptible to oxidative modification by reactive oxygen species that are formed by the photosystem during illumination. Using spin probes and EPR spectroscopy, we have determined that both O2•- and HO• are involved in the photoinhibitory process. Using tandem mass spectroscopy, we have identified a number of oxidatively modified D1 and D2 residues. Our analysis indicates that these oxidative modifications are associated with formation of HO• at both the Mn4O5Ca cluster and the nonheme iron. Additionally, O2•- appears to be formed by the reduction of O2 at either PheoD1 or QA Early oxidation of D1:332H, which is coordinated with the Mn1 of the Mn4O5Ca cluster, appears to initiate a cascade of oxidative events that lead to the oxidative modification of numerous residues in the C termini of the D1 and D2 proteins on the donor side of the photosystem. Oxidation of D2:244Y, which is a bicarbonate ligand for the nonheme iron, induces the propagation of oxidative reactions in residues of the D-de loop of the D2 protein on the electron acceptor side of the photosystem. Finally, D1:130E and D2:246M are oxidatively modified by O2•- formed by the reduction of O2 either by PheoD1•- or QA•- The identification of specific amino acid residues oxidized by reactive oxygen species provides insights into the mechanism of damage to the D1 and D2 proteins under light stress.

94 citations


Journal ArticleDOI
TL;DR: The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII and PSI decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSI [Y(NO) and Y(NPQ)] increased sharply.
Abstract: High temperature and high light intensity is a common environment posing a great risk to organisms. This study aimed to elucidate the effects of sub-high temperature and high light stress (HH, 35°C, 1000 μmol∙m-2∙s-1) and recovery on the photosynthetic mechanism, photoinhibiton of photosystem II (PSII) and photosystem I (PSI), and reactive oxygen (ROS) metabolism of tomato seedlings. The results showed that with prolonged stress time, net photosynthetic rate (Pn), Rubisco activity, maximal photochemistry efficiency (Fv/Fm), efficient quantum yield and electron transport of PSII [Y(II) and ETR(II)] and PSI [Y(I) and ETR(I)] decreased significantly whereas yield of non-regulated and regulated energy dissipation of PSII [Y(NO) and Y(NPQ)] increased sharply. The donor side limitation of PSI [Y(ND)] increased but the acceptor side limitation of PSI [Y(NA)] decreased. Content of malondialdehyde (MDA) and hydrogen peroxide (H2O2) were increased while activity of superoxide dismutase (SOD) and peroxidase (POD) were significantly inhibited compared to control. HH exposure affected photosynthetic carbon assimilation, multiple sites in PSII and PSI, ROS accumulation and elimination of Solanum lycopersicum L.

85 citations


Journal ArticleDOI
TL;DR: The results suggested that chloroplastic CF0 CF1 -ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes.
Abstract: Over-reduction of the photosynthetic electron transport (PET) chain should be avoided, because the accumulation of reducing electron carriers produces reactive oxygen species (ROS) within photosystem I (PSI) in thylakoid membranes and causes oxidative damage to chloroplasts. To prevent production of ROS in thylakoid membranes the H+ gradient (ΔpH) needs to be built up across the thylakoid membranes to suppress the over-reduction state of the PET chain. In this study, we aimed to identify the critical component that stimulates ΔpH formation under illumination in higher plants. To do this, we screened ethyl methane sulfonate (EMS)-treated Arabidopsis thaliana, in which the formation of ΔpH is impaired and the PET chain caused over-reduction under illumination. Subsequently, we isolated an allelic mutant that carries a missense mutation in the γ-subunit of chloroplastic CF0 CF1 -ATP synthase, named hope2. We found that hope2 suppressed the formation of ΔpH during photosynthesis because of the high H+ efflux activity from the lumenal to stromal side of the thylakoid membranes via CF0 CF1 -ATP synthase. Furthermore, PSI was in a more reduced state in hope2 than in wild-type (WT) plants, and hope2 was more vulnerable to PSI photoinhibition than WT under illumination. These results suggested that chloroplastic CF0 CF1 -ATP synthase adjusts the redox state of the PET chain, especially for PSI, by modulating H+ efflux activity across the thylakoid membranes. Our findings suggest the importance of the buildup of ΔpH depending on CF0 CF1 -ATP synthase to adjust the redox state of the reaction center chlorophyll P700 in PSI and to suppress the production of ROS in PSI during photosynthesis.

84 citations


Journal ArticleDOI
TL;DR: The data show that leaf and plant age are both important factors influencing the fate of excitation energy, and both plant and leaf age should be taken into consideration during the quantification of photosynthetic and photoprotective traits to produce repeatable and reliable results.
Abstract: In this work, we studied the changes in high-light tolerance and photosynthetic activity in leaves of the Arabidopsis (Arabidopsis thaliana) rosette throughout the vegetative stage of growth. We implemented an image-analysis work flow to analyze the capacity of both the whole plant and individual leaves to cope with excess excitation energy by following the changes in absorbed light energy partitioning. The data show that leaf and plant age are both important factors influencing the fate of excitation energy. During the dark-to-light transition, the age of the plant affects mostly steady-state levels of photochemical and nonphotochemical quenching, leading to an increased photosynthetic performance of its leaves. The age of the leaf affects the induction kinetics of nonphotochemical quenching. These observations were confirmed using model selection procedures. We further investigated how different leaves on a rosette acclimate to high light and show that younger leaves are less prone to photoinhibition than older leaves. Our results stress that both plant and leaf age should be taken into consideration during the quantification of photosynthetic and photoprotective traits to produce repeatable and reliable results.

77 citations


Journal ArticleDOI
TL;DR: It is demonstrated, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.
Abstract: In land plants, photosystem I (PSI) photoinhibition limits carbon fixation and causes growth defects. In addition, recovery from PSI photoinhibition takes much longer than PSII photoinhibition when the PSI core-complex is degraded by oxidative damage. Accordingly, PSI photoinhibition should be avoided in land plants, and land plants should have evolved mechanisms to prevent PSI photoinhibition. However, such protection mechanisms have not yet been identified, and it remains unclear whether all land plants suffer from PSI photoinhibition in the same way. In the present study, we focused on the susceptibility of PSI to photoinhibition and investigated whether mechanisms of preventing PSI photoinhibition varied among land plant species. To assess the susceptibility of PSI to photoinhibition, we used repetitive short-pulse (rSP) illumination, which specifically induces PSI photoinhibition. Subsequently, we found that land plants possess a wide variety of tolerance mechanisms against PSI photoinhibition. In particular, gymnosperms, ferns and mosses/liverworts exhibited higher tolerance to rSP illumination-induced PSI photoinhibition than angiosperms, and detailed analyses indicated that the tolerance of these groups could be partly attributed to flavodiiron proteins, which protected PSI from photoinhibition by oxidizing the PSI reaction center chlorophyll (P700) as an electron acceptor. Furthermore, we demonstrate, for the first time, that gymnosperms, ferns and mosses/liverworts possess a protection mechanism against photoinhibition of PSI that differs from that of angiosperms.

72 citations


Journal ArticleDOI
TL;DR: Low-red/far-red (L-R/FR) ratio light conditions significantly alleviate PSII and PSI photoinhibition in the shade leaves of tomato (Solanum lycopersicum) plants and demonstrate that HY5 is an important hub in the cross talk between light and cold response pathways, leading to the attenuation of photoin inhibition by enhanced induction of photoprotection in shade leaves.
Abstract: Photoreceptor-mediated light signaling plays a critical role in plant growth, development, and stress responses but its contribution to the spatial regulation of photoinhibition and photoprotection within the canopy remains unclear. Here, we show that low-red/far-red (L-R/FR) ratio light conditions significantly alleviate PSII and PSI photoinhibition in the shade leaves of tomato (Solanum lycopersicum) plants. This protection is accompanied by a phytochrome A-dependent induction of LONG HYPOCOTYL5 (HY5). HY5 binds to the promoter of ABA INSENSITIVE5 (ABI5), triggering RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1)-dependent H2O2 production in the apoplast. Decreased levels of HY5, ABI5, and RBOH1 transcripts increased cold-induced photoinhibition and abolished L-R/FR-induced alleviation of photoinhibition. L-R/FR illumination induced nonphotochemical quenching (NPQ) of chlorophyll a fluorescence and increased the activities of Foyer-Halliwell-Asada cycle enzymes and cyclic electron flux (CEF) around PSI. In contrast, decreased HY5, ABI5, and RBOH1 transcript levels abolished the positive effect of L-R/FR on photoprotection. Loss of PROTON GRADIENT REGULATION5-dependent CEF led to increased photoinhibition and attenuated L-R/FR-dependent NPQ. These data demonstrate that HY5 is an important hub in the cross talk between light and cold response pathways, integrating ABA and reactive oxygen species signaling, leading to the attenuation of photoinhibition by enhanced induction of photoprotection in shade leaves.

70 citations


Journal ArticleDOI
TL;DR: An essential role is identified for tocopherol in tomato under combined high-light and high-temperature stress.
Abstract: In a changing environment, plants need to cope with the impact of rising temperatures together with high light intensity. Here, we used lipidomics in the tomato model system to identify lipophilic molecules that enhance tolerance to combined high-temperature and high-light stress. Among several hundred metabolites, the two most strongly up-regulated compounds were α-tocopherol and plastoquinone/plastoquinol. Both are well-known lipid antioxidants and contribute to the protection of photosystem II (PSII) against photodamage under environmental stress. To address the protective function of tocopherol, an RNAi line (vte5) with decreased expression of VTE5 and reduced levels of α-tocopherol was selected. VTE5 encodes phytol kinase, which acts in the biosynthetic pathway of tocopherols. vte5 suffered strong photoinhibition and photobleaching when exposed to combined high-light and high-temperature stress, but neither stress alone produced a visible phenotype. As vte5 had plastoquinone levels similar to those of the wild type under combined stress, the strong phenotype could be attributed to the lack of α-tocopherol. These findings suggest that VTE5 protects against combined high-light and high-temperature stress and does so by supporting α-tocopherol production.

Journal ArticleDOI
TL;DR: NPQ could improve photosynthesis in rice under moderate light and alleviate photodamage under high light via a decrease in ROS generation, as well as lower photoinhibitory quenching and production of reactive oxygen species (ROS).
Abstract: Non-photochemical quenching (NPQ) is an important photoprotective mechanism in rice; however, little is known regarding its role in the photosynthetic response of rice plants with differing in leaf color to different irradiances. In this study, 2 rice genotypes containing different chlorophyll contents, namely Zhefu802 (high chlorophyll) and Chl-8 (low chlorophyll), were subjected to moderate or high levels of light intensity at the 6-leaf stage. Chl-8 possessed a lower chlorophyll content and higher chlorophyll a:b ratio compared with Zhefu802, while Pn, Fv/Fm and ΦPSII contents were higher in Chl-8. Further results indicated that no significant differences were observed in the activities of Rubisco, Mg2+-ATPase, and Ca2+-ATPase between these genotypes. This suggested that no significant difference in the capacity for CO2 assimilation exists between Zhe802 and Chl-8. Additionally, no significant differences in stomatal limitation were observed between the genotypes. Interestingly, higher NPQ and energy quenching (qE), as well as lower photoinhibitory quenching (qI) and production of reactive oxygen species (ROS) was observed in Chl-8 compared with Zhefu802 under both moderate and high light treatments. This indicated that NPQ could improve photosynthesis in rice under both moderate and high light intensities, particularly the latter, whereby NPQ alleviates photodamage by reducing ROS production. Both zeaxanthin content and the expression of PsbS1 were associated with the induction of NPQ under moderate light, while only zeaxanthin was associated with NPQ induction under high light. In summary, NPQ could improve photosynthesis in rice under moderate light and alleviate photodamage under high light via a decrease in ROS generation.

Journal ArticleDOI
TL;DR: It is suggested that exogenous melatonin mitigates photoinhibition by accelerating NPQ through the stimulation of VDE activity and the enhancement of de-epoxidation state of xanthophyll pigments.
Abstract: Melatonin plays an important role in tolerance to multiple stresses in plants. Recent studies have shown that melatonin relieves photoinhibition in plants under cold stress; however, the mechanisms are not fully understood. Non-photochemical quenching (NPQ) is a key process thermally dissipating excess light energy that plants employ as a protective mechanism to prevent the over reduction of photosystem II. Here, we report the effects of exogenous melatonin on NPQ and mitigation of photoinhibition in tomato seedlings exposed to moderate light during chilling. In response to moderate light during chilling, the maximum quantum yield (Fv/Fm) and the effective photochemical efficiency (F'v/F'm) of PSII were both substantially reduced, showing severe photoinhibition in tomato seedlings, whereas exogenous application of melatonin effectively alleviated the photoinhibition. Further experiment showed that melatonin accelerated the induction of NPQ in response to moderate light and maintained higher level of NPQ upon longer exposure to light during chilling. Consistent with the increased NPQ was the elevated de-epoxidation state of xanthophyll pigments in melatonin-pretreated seedlings exposed to light during chilling. Enzyme activity assay showed that violaxanthin de-epoxidase (VDE), which catalyzes the de-epoxidation reaction in the xanthophyll cycle, was activated by light and the activity was further enhanced by application of melatonin. Further analysis revealed that melatonin induced the expression of VDE gene in tomato seedlings under moderate light and chilling conditions. Ascorbic acid is an essential cofactor of VDE and the level of it was found to be increased in melatonin-pretreated seedlings. Feeding tomato seedlings with dithiothreitol, an inhibitor of VDE, blocked the effects of melatonin on the de-epoxidation state of xanthophyll pigments and the induction of NPQ. Collectively, these results suggest that exogenous melatonin mitigates photoinhibition by accelerating NPQ through the stimulation of VDE activity and the enhancement of de-epoxidation state of xanthophyll pigments.

Journal ArticleDOI
TL;DR: Results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.
Abstract: Light is the driving force of plant growth, providing the energy required for photosynthesis. However, photosynthesis is also vulnerable to light-induced damage caused by the production of reactive oxygen species (ROS) in the PSII reaction center. Plants have therefore evolved various protective mechanisms such as non-photochemical quenching (NPQ) to dissipate excessively absorbed solar energy as heat; however, photoinhibition and NPQ represent a significant loss in solar energy and photosynthetic efficiency, which lowers the yield potential in crops. To optimize light capture and light energy conversion in rice, a genotype with pale green leaves (pgl) and a normally pigmented control (Z802) were subjected to high (HL) and low light (LL). Chlorophyll content, light absorption, chloroplast micrographs, abundance of light-harvesting complex (LHC) binding proteins, electron transport rates (ETR), photochemical and non-photochemical quenching, and generation of reactive oxygen species (ROS) were subsequently examined. Pgl had a smaller size of light-harvesting chlorophyll antenna and absorbed less photons than Z802. NPQ and the generation of ROS were also low, while photosystem II efficiency and ETR were high, resulting in improved photosynthesis and less photoinhibition in pgl than Z802. Chlorophyll synthesis and solar conversion efficiency were higher in pgl under HL compared to LL treatment, while Z802 showed an opposite trend due to the high level of photoinhibition under HL. In Z802, excessive absorption of solar energy not only increased the generation of ROS and NPQ, but also exacerbated the effects of increases in temperature, causing midday depression in photosynthesis. These results suggest that photosynthesis and yield potential in rice could be enhanced by truncated light-harvesting chlorophyll antenna size.

Journal ArticleDOI
TL;DR: An overview is given showing how lipid peroxidation products formed under light stress and heat stress in the thylakoid membranes cause oxidative modification of proteins in higher plant photosystem II.

Journal ArticleDOI
TL;DR: Results clearly indicate that PISG is a physiological adaptation to avoid germination on the soil surface, where conditions are not suitable for seedling establishment.
Abstract: Light conditions provide important information about the best time and place for seedling establishment Photoinhibition of seed germination (PISG), defined as the partial or complete suppression of germination under white light, has been interpreted as a physiological adaptation to avoid germination at or near the soil surface This review is the first report of an all-inclusive, fully quantitative analysis of PISG in seed plants Pertinent data available from the published literature for 301 taxa from 59 families and 27 orders were assessed The association of PISG with several plant and seed traits allowed us to consider the adaptive significance of PISG in relation to plant life histories and the natural environments As no gymnosperm has been found to be truly photoinhibited, it seems that PISG is apomorphic to flowering plants (especially monocots) Seeds of most taxa with PISG have a dark colour and intermediate mass, mostly in the range 1 to 27 mg PISG is absent from humid tropical regions and from cold climates, but it is strongly associated with open, disturbed and dry habitats An intriguing implication of PISG is the formation of a soil-surface seed bank Taken together, these results clearly indicate that PISG is a physiological adaptation to avoid germination on the soil surface, where conditions are not suitable for seedling establishment PISG is probably much more frequent in seed plants than previously thought Thus, laboratory experiments should be conducted under well-characterized light and dark conditions

Journal ArticleDOI
TL;DR: In this paper, the effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58).
Abstract: Heat stress is one of the main abiotic stresses that limit plant growth. The effects of high temperature on oxidative damage, PSII activity and D1 protein turnover were studied in three wheat varieties with different heat susceptibility (CS, YN949 and AK58). The results showed that heat stress induced lower lipid peroxidation in AK58 and YN949 than CS, which was related to different changes of SOD, CAT, POD and H2O2. Similarly, AK58 and YN949 performed better PSII photochemical efficiency (Fv/Fm, ΦPSII and ETR) under high temperature, which was attributed to rapid synthesis and degradation of D1 protein. Moreover, higher expression of D1 protein turnover-related genes (PsbA, STN8, PBCP, Deg1, Deg2, Deg5, Deg8, FtsH1/5 and FtsH2/8) and SOD activity in AK58 and YN949 under normal conditions also established a basis for acclimatizing high temperatures, thereby alleviating PSII photoinhibition and reducing oxidative damage when exposed to heat stress.

Journal ArticleDOI
TL;DR: Comparing the localization and possible function of two homologous PSII assembly factors from the cyanobacterium Synechocystis sp.

Journal ArticleDOI
TL;DR: The results suggest that overclosure of PSII reaction centers at high temperature resulted in the photoinhibition of PSii, while the stimulation of CEF in grape played an important role in the photoprotection of PS II and PSI at high temperatures through contributing to the generation of a proton gradient.

Journal ArticleDOI
TL;DR: Modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance.
Abstract: The photosynthetic light reactions provide energy that is consumed and stored in electron sinks, the products of photosynthesis. A balance between light reactions and electron consumption in the chloroplast is vital for plants, and is protected by several photosynthetic regulation mechanisms. Photosystem I (PSI) is particularly susceptible to photoinhibition when these factors become unbalanced, which can occur in low temperatures or in high light. In this study we used the pgr5 Arabidopsis mutant that lacks ΔpH-dependent regulation of photosynthetic electron transport as a model to study the consequences of PSI photoinhibition under high light. We found that PSI damage severely inhibits carbon fixation and starch accumulation, and attenuates enzymatic oxylipin synthesis and chloroplast regulation of nuclear gene expression after high light stress. This work shows that modifications to regulation of photosynthetic light reactions, which may be designed to improve yield in crop plants, can negatively impact metabolism and signalling, and thereby threaten plant growth and stress tolerance.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.

Journal ArticleDOI
TL;DR: It is confirmed that PSI photoinhibition decreased with the increase in growth irradiance in A. thaliana and field-grown plants, and that this PSI photodamage was largely suppressed by addition of FR light.
Abstract: It has been reported that PSI photoinhibition is induced even in wild-type plants of Arabidopsis thaliana, rice and other species by exposure of leaves to fluctuating light (FL) for a few hours. Because plants are exposed to FL in nature, they must possess protective mechanisms against the FL-induced photodamage. Here, using A. thaliana grown at various irradiances, we examined PSI photoprotection by far-red (FR) light at intensities comparable with those observed in nature. Dark-treated leaves were illuminated by red FL alternating high/low light at 1,200/30 µmol m-2 s-1 for 800 ms/10 s. By this FL treatment without FR light for 120 min, the level of photo-oxidizable P700 was decreased by 30% even in the plants grown at high irradiances. The addition of continuous FR light during the FL suppressed this damage almost completely. With FR light, P700 was kept in a more oxidized state in both low- and high-light phases. The protective effect of FR light was diminished more in mutants of the NADH dehydrogenase-like complex (NDH)-mediated cyclic electron flow around PSI (CEF-PSI) than in the PGR5 (proton gradient regulation 5)-mediated CEF-PSI, indicating that the NDH-mediated CEF-PSI would be a major contributor to PSI photoprotection in the presence of FR light. We also confirmed that PSI photoinhibition decreased with the increase in growth irradiance in A. thaliana and field-grown plants, and that this PSI photodamage was largely suppressed by addition of FR light. These results clearly indicate that the most effective PSI protection is realized in the presence of FR light.

Journal ArticleDOI
TL;DR: The results indicate that in the first land plants, liverworts, photorespiration started to function as electron sink and replaced the flavodiiron proteins which catalyze the reduction of O2 at photosystem I in cyanobacteria.
Abstract: In higher plants, the electron-sink capacity of photorespiration contributes to alleviation of photoinhibition by dissipating excess energy under conditions when photosynthesis is limited. We addressed the question at which point in the evolution of photosynthetic organisms photorespiration began to function as electron sink and replaced the flavodiiron proteins which catalyze the reduction of O2 at photosystem I in cyanobacteria. Algae do not have a higher activity of photorespiration when CO2 assimilation is limited, and it can therefore not act as an electron sink. Using land plants (liverworts, ferns, gymnosperms, and angiosperms) we compared photorespiration activity and estimated the electron flux driven by photorespiration to evaluate its electron-sink capacity at CO2 -compensation point. In vivo photorespiration activity was estimated by the simultaneous measurement of O2 -exchange rate and chlorophyll fluorescence yield. All C3-plants leaves showed transient O2 -uptake after actinic light illumination (post-illumination transient O2 -uptake), which reflects photorespiration activity. Post-illumination transient O2 -uptake rates increased in the order from liverworts to angiosperms through ferns and gymnosperms. Furthermore, photorespiration-dependent electron flux in photosynthetic linear electron flow was estimated from post-illumination transient O2 -uptake rate and compared with the electron flux in photosynthetic linear electron flow in order to evaluate the electron-sink capacity of photorespiration. The electron-sink capacity at the CO2 -compensation point also increased in the above order. In gymnosperms photorespiration was determined to be the main electron-sink. C3-C4 intermediate species of Flaveria plants showed photorespiration activity, which intermediate between that of C3- and C4-flaveria species. These results indicate that in the first land plants, liverworts, photorespiration started to function as electron sink. According to our hypothesis, the dramatic increase in partial pressure of O2 in the atmosphere about 0.4 billion years ago made it possible to drive photorespiration with higher activity in liverworts.

Journal ArticleDOI
TL;DR: In this paper, the photoprotection mechanism of anthocyanins is investigated and it was shown that over-expression of CHS gene enhances HL resistance by synthesizing more Anthocyanin, while overexpression enhances the adaptability of plants to HL and that they maintain photosynthetic capacity via antioxidation and attenuation of light.

Journal ArticleDOI
TL;DR: The molecular mechanisms to enable proton gradient and ATP generation that powers photoprotection are postulated by measuring Photosystem II charge separation yield and flash-induced O2 yield to measure the contributions from both linear (PSII-LEF) and cyclic ( PSII-CEF) electron flow within PSII.

Journal ArticleDOI
TL;DR: Investigation of differences between young and mature leaves of common fig in photosynthetic performance as well as accumulation of the main photosynthesis proteins revealed different adjustment mechanisms to keep effective photosynthesis.

Journal ArticleDOI
TL;DR: Results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes and suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments.
Abstract: Despite our increasingly sophisticated understanding of mechanisms ensuring efficient photosynthesis under laboratory-controlled light conditions, less is known about the regulation of photosynthesis under fluctuating light. This is important because—in nature—photosynthetic organisms experience rapid and extreme changes in sunlight, potentially causing deleterious effects on photosynthetic efficiency and productivity. Here we report that the chloroplast thylakoid lumenal protein MAINTENANCE OF PHOTOSYSTEM II UNDER HIGH LIGHT 2 (MPH2; encoded by At4g02530) is required for growth acclimation of Arabidopsis thaliana plants under controlled photoinhibitory light and fluctuating light environments. Evidence is presented that mph2 mutant light stress susceptibility results from a defect in photosystem II (PSII) repair, and our results are consistent with the hypothesis that MPH2 is involved in disassembling monomeric complexes during regeneration of dimeric functional PSII supercomplexes. Moreover, mph2—and previously characterized PSII repair-defective mutants—exhibited reduced growth under fluctuating light conditions, while PSII photoprotection-impaired mutants did not. These findings suggest that repair is not only required for PSII maintenance under static high-irradiance light conditions but is also a regulatory mechanism facilitating photosynthetic adaptation under fluctuating light environments. This work has implications for improvement of agricultural plant productivity through engineering PSII repair.

Journal ArticleDOI
TL;DR: This study indicates that A. donax can be considered as a promising and valuable energy crop for exploiting the Mediterranean marginal land, and a moderately sensitive species in response to 256 and 512 mM NaCl.
Abstract: Biometric and physiological analyses of salt stress responses were performed in two time-course experiments on giant reed (Arundo donax L). Experiment I evaluated biomass production in plants exposed to 128, 256, 512 mM NaCl for 84 days. For Experiment II, plants grown under 256 mM NaCl were further assessed for chlorophyll a fluorescence, ionic partitioning, and proline content at 14 and 49 days after treatment (DAT). Biomass allocation was affected with all the concentrations of NaCl used from 28 DAT onward. Proline biosynthesis in leaves was more stimulated than that in roots after salt stress. Photosynthetic efficiency of photosystem II (PSII) was not affected by salt stress up to 42 DAT, while 49 DAT plants exhibited a significant reduction of both potential (ΦPSII) and maximal (Fv/Fm) PSII quantum yield. A. donax resulted a moderately sensitive species in response to 256 and 512 mM NaCl, concentrations that are however higher than that commonly found in most marginal lands (such as 128 mM or...

Journal ArticleDOI
TL;DR: Investigating whether these two lines have different mechanisms of protecting photosystem II from photodamage under heat stress suggested that higher CET can confer higher photoprotection to PSII in rice lines, which can be a desirable trait during rice breeding.

Journal ArticleDOI
TL;DR: The expected scenario of increased temperature and CO2 concentration in the Antarctic Peninsula area will allow the forest-forming seaweed Desmarestia anceps to tolerate higher irradiances while maintaining its productivity.
Abstract: Ocean acidification and warming are affecting polar regions with particular intensity Rocky shores of the Antarctic Peninsula are dominated by canopy-forming Desmarestiales This study investigates the physiological and transcriptomic responses of the endemic macroalga Desmarestia anceps to a combination of different levels of temperature (2 and 7 °C), dissolved CO2 (380 and 1000 ppm), and irradiance (65 and 145 µmol photons m−2 s−1) Growth and photosynthesis increased at high CO2 conditions, and strongly decreased at 2 °C plus high irradiance, in comparison to the other treatments Photoinhibition at 2 °C plus high irradiance was evidenced by the photochemical performance and intensive release of dissolved organic carbon The highest number of differentially regulated transcripts was observed in thalli exposed to 2 °C plus high irradiance Algal 13C isotopic discrimination values suggested an absence of down-regulation of carbon-concentrating mechanisms at high CO2 CO2 enrichment induced few transcriptomic changes There was high and constitutive gene expression of many photochemical and inorganic carbon utilization components, which might be related to the strong adaptation of D anceps to the Antarctic environment These results suggest that increased temperature and CO2 will allow D anceps to maintain its productivity while tolerating higher irradiances than at present conditions

Journal ArticleDOI
TL;DR: Evidence is presented of the LxL cycle’s role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light and an increase in dark-acclimated PSII efficiency associated with Lx accumulation is shown.
Abstract: Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cycle has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle's role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.