scispace - formally typeset
Search or ask a question

Showing papers on "Photosynthetic reaction centre published in 2014"


Journal ArticleDOI
TL;DR: It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.
Abstract: Increased UV-B radiation on the earth's surface due to depletion of stratospheric ozone layer is one of the changes of current climate-change pattern. The deleterious effects of UV-B radiation on photosynthesis and photosynthetic productivity of plants are reviewed. Perusal of relevant literature reveals that UV-B radiation inflicts damage to the photosynthetic apparatus of green plants at multiple sites. The sites of damage include oxygen evolving complex, D1/D2 reaction center proteins and other components on the donor and acceptor sides of PS II. The radiation inactivates light harvesting complex II and alters gene expression for synthesis of PS II reaction center proteins. Mn cluster of water oxidation complex is the most important primary target of UV-B stress whereas D1 and D2 proteins, quinone molecules and cytochrome b are the subsequent targets of UV-B. In addition, photosynthetic carbon reduction is also sensitive to UV-B radiation which has a direct effect on the activity and content of Rubisco. Some indirect effects of UV-B radiation include changes in photosynthetic pigments, stomatal conductance and leaf and canopy morphology. The failure of protective mechanisms makes PS II further vulnerable to the UV-B radiation. Reactive oxygen species are involved in UV-B induced responses in plants, both as signaling and damaging agents. Exclusion of ambient UV components under field conditions results in the enhancement of the rate of photosynthesis, PS II efficiency and subsequently increases the biomass accumulation and crop yield. It is concluded that predicted future increase in UV-B irradiation will have significant impact on the photosynthetic efficiency and the productivity of higher plants.

244 citations


Journal ArticleDOI
TL;DR: This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII).
Abstract: Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms.

217 citations


Journal ArticleDOI
TL;DR: Femto- and nanosecond transient absorption and photoelectrochemical techniques have been employed in these studies to give clear evidence for the occurrence of energy- and electron-transfer reactions and to determine their rates and efficiencies.
Abstract: Various molecular and supramolecular systems have been synthesized and characterized recently to mimic the functions of photosynthesis, in which solar energy conversion is achieved. Artificial photosynthesis consists of light-harvesting and charge-separation processes together with catalytic units of water oxidation and reduction. Among the organic molecules, derivatives of BF2-chelated dipyrromethene (BODIPY), "porphyrin's little sister", have been widely used in constructing these artificial photosynthetic models due to their unique properties. In these photosynthetic models, BODIPYs act as not only excellent antenna molecules, but also as electron-donor and -acceptor molecules in both the covalently linked molecular and supramolecular systems formed by axial coordination, hydrogen bonding, or crown ether complexation. The relationships between the structures and photochemical reactivities of these novel molecular and supramolecular systems are discussed in relation to the efficiency of charge separation and charge recombination. Femto- and nanosecond transient absorption and photoelectrochemical techniques have been employed in these studies to give clear evidence for the occurrence of energy- and electron-transfer reactions and to determine their rates and efficiencies.

208 citations


Journal ArticleDOI
TL;DR: Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen.

150 citations


Journal ArticleDOI
TL;DR: A chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex is identified.
Abstract: Efficient assembly and repair of the oxygen-evolving photosystem II (PSII) complex is vital for maintaining photosynthetic activity in plants, algae, and cyanobacteria. How chlorophyll is delivered to PSII during assembly and how vulnerable assembly complexes are protected from photodamage are unknown. Here, we identify a chlorophyll and β-carotene binding protein complex in the cyanobacterium Synechocystis PCC 6803 important for formation of the D1/D2 reaction center assembly complex. It is composed of putative short-chain dehydrogenase/reductase Ycf39, encoded by the slr0399 gene, and two members of the high-light-inducible protein (Hlip) family, HliC and HliD, which are small membrane proteins related to the light-harvesting chlorophyll binding complexes found in plants. Perturbed chlorophyll recycling in a Ycf39-null mutant and copurification of chlorophyll synthase and unassembled D1 with the Ycf39-Hlip complex indicate a role in the delivery of chlorophyll to newly synthesized D1. Sequence similarities suggest the presence of a related complex in chloroplasts.

121 citations


Journal ArticleDOI
TL;DR: This review highlights recent advances for the nano-engineering of photo-bioelectrochemical cells through the assembly of the photosynthetic proteins on electrode surfaces through various strategies to immobilize the photosynthesis complexes on conductive surfaces and different methodologies to electrically wire them with the electrode supports.
Abstract: During the last few years, intensive research efforts have been directed toward the application of several highly efficient light-harvesting photosynthetic proteins, including reaction centers (RCs), photosystem I (PSI), and photosystem II (PSII), as key components in the light-triggered generation of fuels or electrical power. This review highlights recent advances for the nano-engineering of photo-bioelectrochemical cells through the assembly of the photosynthetic proteins on electrode surfaces. Various strategies to immobilize the photosynthetic complexes on conductive surfaces and different methodologies to electrically wire them with the electrode supports are presented. The different photoelectrochemical systems exhibit a wide range of photocurrent intensities and power outputs that sharply depend on the nano-engineering strategy and the electroactive components. Such cells are promising candidates for a future production of biologically-driven solar power.

89 citations


Journal ArticleDOI
TL;DR: Novel photosynthetic reaction center model compounds of the type donor2 -donor1 -acceptor, composed of phenothiazine, BF2 -chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods.
Abstract: Novel photosynthetic reaction center model compounds of the type donor2 -donor1 -acceptor, composed of phenothiazine, BF2 -chelated dipyrromethene (BODIPY), and fullerene, respectively, have been newly synthesized using multistep synthetic methods. X-ray structures of three of the phenothiazine-BODIPY intermediate compounds have been solved to visualize the substitution effect caused by the phenothiazine on the BODIPY macrocycle. Optical absorption and emission, computational, and differential pulse voltammetry studies were systematically performed to establish the molecular integrity of the triads. The N-substituted phenothiazine was found to be easier to oxidize by 60 mV compared to the C-substituted analogue. The geometry and electronic structures were obtained by B3LYP/6-31G(dp) calculations (for H, B, N, and O) and B3LYP/6-31G(df) calculations (for S) in vacuum, followed by a single-point calculation in benzonitrile utilizing the polarizable continuum model (PCM). The HOMO-1, HOMO, and LUMO were, respectively, on the BODIPY, phenothiazine and fullerene entities, which agreed well with the site of electron transfer determined from electrochemical studies. The energy-level diagram deduced from these data helped in elucidating the mechanistic details of the photochemical events. Excitation of BODIPY resulted in ultrafast electron transfer to produce PTZ-BODIPY(.+) -C60 (.-) ; subsequent hole shift resulted in PTZ(.+) -BODIPY-C60 (.-) charge-separated species. The return of the charge-separated species was found to be solvent dependent. In nonpolar solvents the PTZ(.+) -BODIPY-C60 (.-) species populated the (3) C60 * prior to returning to the ground state, while in polar solvent no such process was observed due to relative positioning of the energy levels. The (1) BODIPY* generated radical ion-pair in these triads persisted for few nanoseconds due to electron transfer/hole-shift mechanism.

76 citations


Journal ArticleDOI
28 Jan 2014-eLife
TL;DR: The structure of PSIPsaJF is solved and a monomeric PSI is solved, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain.
Abstract: Oxygenic photosynthesis supports virtually all life forms on earth. Light energy is converted by two photosystems-photosystem I (PSI) and photosystem II (PSII). Globally, nearly 50% of photosynthesis takes place in the Ocean, where single cell cyanobacteria and algae reside together with their viruses. An operon encoding PSI was identified in cyanobacterial marine viruses. We generated a PSI that mimics the salient features of the viral complex, named PSI(PsaJF). PSI(PsaJF) is promiscuous for its electron donors and can accept electrons from respiratory cytochromes. We solved the structure of PSI(PsaJF) and a monomeric PSI, with subunit composition similar to the viral PSI, providing for the first time a detailed description of the reaction center and antenna system from mesophilic cyanobacteria, including red chlorophylls and cofactors of the electron transport chain. Our finding extends the understanding of PSI structure, function and evolution and suggests a unique function for the viral PSI. DOI: http://dx.doi.org/10.7554/eLife.01496.001.

75 citations


Journal ArticleDOI
TL;DR: Zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII, and it is proposed that, upon acclimation to high light, PSI–LHCI changes its light-harvesting efficiency by a zexanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.
Abstract: In oxygenic photosynthetic eukaryotes, the hydroxylated carotenoid zeaxanthin is produced from preexisting violaxanthin upon exposure to excess light conditions. Zeaxanthin binding to components of the photosystem II (PSII) antenna system has been investigated thoroughly and shown to help in the dissipation of excess chlorophyll-excited states and scavenging of oxygen radicals. However, the functional consequences of the accumulation of the light-harvesting complex I (LHCI) proteins in the photosystem I (PSI) antenna have remained unclarified so far. In this work we investigated the effect of zeaxanthin binding on photoprotection of PSI-LHCI by comparing preparations isolated from wild-type Arabidopsis thaliana (i.e., with violaxanthin) and those isolated from the A. thaliana nonphotochemical quenching 2 mutant, in which violaxanthin is replaced by zeaxanthin. Time-resolved fluorescence measurements showed that zeaxanthin binding leads to a previously unrecognized quenching effect on PSI-LHCI fluorescence. The efficiency of energy transfer from the LHCI moiety of the complex to the PSI reaction center was down-regulated, and an enhanced PSI resistance to photoinhibition was observed both in vitro and in vivo. Thus, zeaxanthin was shown to be effective in inducing dissipative states in PSI, similar to its well-known effect on PSII. We propose that, upon acclimation to high light, PSI-LHCI changes its light-harvesting efficiency by a zeaxanthin-dependent quenching of the absorbed excitation energy, whereas in PSII the stoichiometry of LHC antenna proteins per reaction center is reduced directly.

75 citations


Journal ArticleDOI
TL;DR: Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster.
Abstract: The EPR “split signals” represent key intermediates of the S-state cycle where the redox active D1-Tyr161 (YZ) has been oxidized by the reaction center of the photosystem II enzyme to its tyrosyl radical form, but the successive oxidation of the Mn4CaO5 cluster has not yet occurred (SiYZ˙). Here we focus on the S2YZ˙ state, which is formed en route to the final metastable state of the catalyst, the S3 state, the state which immediately precedes O–O bond formation. Quantum chemical calculations demonstrate that both isomeric forms of the S2 state, the open and closed cubane isomers, can form states with an oxidized YZ˙ residue without prior deprotonation of the Mn4CaO5 cluster. The two forms are expected to lie close in energy and retain the electronic structure and magnetic topology of the corresponding S2 state of the inorganic core. As expected, tyrosine oxidation results in a proton shift towards His190. Analysis of the electronic rearrangements that occur upon formation of the tyrosyl radical suggests that a likely next step in the catalytic cycle is the deprotonation of a terminal water ligand (W1) of the Mn4CaO5 cluster. Diamagnetic metal ion substitution is used in our calculations to obtain the molecular g-tensor of YZ˙. It is known that the gx value is a sensitive probe not only of the extent of the proton shift between the tyrosine–histidine pair, but also of the polarization environment of the tyrosine, especially about the phenolic oxygen. It is shown for PSII that this environment is determined by the Ca2+ ion, which locates two water molecules about the phenoxyl oxygen, indirectly modulating the oxidation potential of YZ.

65 citations


Journal ArticleDOI
TL;DR: It is proposed that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.
Abstract: Photosystem I (PSI) is a reaction center associated with oxygenic photosynthesis. Unlike the monomeric reaction centers in green and purple bacteria, PSI forms trimeric complexes in most cyanobacteria with a 3-fold rotational symmetry that is primarily stabilized via adjacent PsaL subunits; however, in plants/algae, PSI is monomeric. In this study, we discovered a tetrameric form of PSI in the thermophilic cyanobacterium Chroococcidiopsis sp TS-821 (TS-821). In TS-821, PSI forms tetrameric and dimeric species. We investigated these species by Blue Native PAGE, Suc density gradient centrifugation, 77K fluorescence, circular dichroism, and single-particle analysis. Transmission electron microscopy analysis of native membranes confirms the presence of the tetrameric PSI structure prior to detergent solubilization. To investigate why TS-821 forms tetramers instead of trimers, we cloned and analyzed its psaL gene. Interestingly, this gene product contains a short insert between the second and third predicted transmembrane helices. Phylogenetic analysis based on PsaL protein sequences shows that TS-821 is closely related to heterocyst-forming cyanobacteria, some of which also have a tetrameric form of PSI. These results are discussed in light of chloroplast evolution, and we propose that PSI evolved stepwise from a trimeric form to tetrameric oligomer en route to becoming monomeric in plants/algae.

Journal ArticleDOI
TL;DR: Better utilization of light energy in generating the long-lived charge-separated state with the help of the present "antenna-reaction-center" model system has been successfully demonstrated.
Abstract: A novel photosynthetic-antenna-reaction-center model compound, comprised of BF2 -chelated dipyrromethene (BODIPY) as an energy-harvesting antenna, zinc porphyrin (ZnP) as the primary electron donor, ferrocene (Fc) as a hole-shifting agent, and phenylimidazole-functionalized fulleropyrrolidine (C60 Im) as an electron acceptor, has been synthesized and characterized. Optical absorption and emission, computational structure optimization, and cyclic voltammetry studies were systematically performed to establish the role of each entity in the multistep photochemical reactions. The energy-level diagram established from optical and redox data helped identifying different photochemical events. Selective excitation of BODIPY resulted in efficient singlet energy transfer to the ZnP entity. Ultrafast electron transfer from the (1) ZnP* (formed either as a result of singlet-singlet energy transfer or direct excitation) or (1) C60 * of the coordinated fullerene resulting into the formation of the Fc-(C60 (.) (-) Im:ZnP(.) (+) )-BODIPY radical ion pair was witnessed by femtosecond transient absorption studies. Subsequent hole migration to the ferrocene entity resulted in the Fc(+) -(C60 (.) (+) Im:ZnP)-BODIPY radical ion pair that persisted for 7-15 μs, depending upon the solvent conditions and contributions from the triplet excited states of ZnP and ImC60 , as revealed by the nanosecond transient spectral studies. Better utilization of light energy in generating the long-lived charge-separated state with the help of the present "antenna-reaction-center" model system has been successfully demonstrated.

Journal ArticleDOI
TL;DR: Engineered cysteine residues near the primary electron donor of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction Center.
Abstract: Engineered cysteine residues near the primary electron donor (P) of the reaction center from the purple photosynthetic bacterium Rhodobacter sphaeroides were covalently conjugated to each of several dye molecules in order to explore the geometric design and spectral requirements for energy transfer between an artificial antenna system and the reaction center. An average of 2.5 fluorescent dye molecules were attached at specific locations near P. The enhanced absorbance cross-section afforded by conjugation of Alexa Fluor 660 dyes resulted in a 2.2-fold increase in the formation of reaction center charge-separated state upon intensity-limited excitation at 650 nm. The effective increase in absorbance cross-section resulting from the conjugation of two other dyes, Alexa Fluor 647 and Alexa Fluor 750, was also investigated. The key parameters that dictate the efficiency of dye-to-reaction center energy transfer and subsequent charge separation were examined using both steady-state and time-resolved fluoresce...

Journal ArticleDOI
TL;DR: A novel biomimetic approach for an effective assembly of photosystem I with the electron transfer carrier cytochrome c (cyt c), deposited on a thiol-modified gold-surface is reported on.
Abstract: Conversion of light into an electrical current based on biohybrid systems mimicking natural photosynthesis is becoming increasingly popular. Photosystem I (PSI) is particularly useful in such photo-bioelectrochemical devices. Herein, we report on a novel biomimetic approach for an effective assembly of photosystem I with the electron transfer carrier cytochrome c (cyt c), deposited on a thiol-modified gold-surface. Atomic force microscopy and surface plasmon resonance measurements have been used for characterization of the assembly process. Photoelectrochemical experiments demonstrate a cyt c mediated generation of an enhanced unidirectional cathodic photocurrent. Here, cyt c can act as a template for the assembly of an oriented and dense layer of PSI and as wiring agent to direct the electrons from the electrode towards the photosynthetic reaction center of PSI. Furthermore, three-dimensional protein architectures have been formed via the layer-by-layer deposition technique resulting in a successive increase in photocurrent densities. An intermittent cyt c layer is essential for an efficient connection of PSI layers with the electrode and for an improvement of photocurrent densities.

Journal ArticleDOI
TL;DR: The description of mechanistic principles on (1)O2 formation under abiotic stress allows us to understand how plants respond to adverse environmental conditions in vivo.
Abstract: Photosystem II (PSII) is exposed to various abiotic stresses associated with adverse environmental conditions such as high light, heat, heavy metals or mechanical injury. Distinctive functional response to adverse environmental conditions is formation of singlet oxygen ((1)O2). In this review, recent progress on mechanistic principles on (1)O2 formation under abiotic stresses is summarized. Under high light, (1)O2 is formed by excitation energy transfer from triplet chlorophylls to molecular oxygen formed by the spin conversion via photosensitization Type II reaction in the PSII antenna complex or by the recombination of (1)[P680(+)Pheo(-)] radical pair in the PSII reaction center. Apart from well-described (1)O2 formation by excitation energy transfer, (1)O2 formation by decomposition of dioxetane and tetroxide is summarized as a potential source of (1)O2 in PSII under heat, heavy metals and mechanical stress. The description of mechanistic principles on (1)O2 formation under abiotic stress allows us to understand how plants respond to adverse environmental conditions in vivo.

Journal ArticleDOI
TL;DR: During leaf development, the photochemical activity of both PSII and PSI increased, although the increase in PSII activity was faster relative to PSI, and the results from the three independent signals corroborate each other.
Abstract: The simultaneous measurements of prompt chlorophyll a fluorescence, delayed chlorophyll a fluorescence and modulated 820nm reflection allow collection and correlation of complementary information for the three domains of the photosynthetic electron transport chain - the PSII electron donor side, electron transport between PSII and PSI, and the PSI electron acceptor side. In this study, we used this approach to investigate photochemical activity during Malus micromalus leaf expansion. The results showed that as leaves expanded, the antenna size per reaction center for the two systems became smaller, and the energetic connectivity of PSII units decreased gradually. Meanwhile, the light trapping efficiency of PSII, electron transfer capacity at the donor side of PSII, exchange capacity of PQs at the QB site and the reoxidation capacity of PQH2 were all increased as leaves expanded. However, the capacity of PQH2 reoxidation increased at a slower rate than the exchange capacity of PQs at the QB site. In general, during leaf development, the photochemical activity of both PSII and PSI increased, although the increase in PSII activity was faster relative to PSI. The results from the three independent signals corroborate each other.

Journal ArticleDOI
TL;DR: The results from the biochemical and spectroscopic characterization showed that the photosystem II antenna is loosely bound to the reaction center, whereas the association is stronger in photosystem I, with the antenna-reaction center super-complexes surviving purification.

Journal ArticleDOI
TL;DR: This study provides a complete structure analysis of lipid-mediated functions in a multi-subunit membrane protein complex and reveals lipid sites at positions essential for assembly and function.

Journal ArticleDOI
TL;DR: The results indicate that the ability of OCP to quench the fluorescence is strongly temperature dependent and affects the rate constants of energy transfer as shown by model based analysis of the decay associated spectra.


Journal ArticleDOI
TL;DR: The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed.
Abstract: The structural organization of photosystem I (PSI) complexes in cyanobacteria and the origin of the PSI antenna long-wavelength chlorophylls and their role in energy migration, charge separation, and dissipation of excess absorbed energy are discussed. The PSI complex in cyanobacterial membranes is organized preferentially as a trimer with the core antenna enriched with long-wavelength chlorophylls. The contents of long-wavelength chlorophylls and their spectral characteristics in PSI trimers and monomers are species-specific. Chlorophyll aggregates in PSI antenna are potential candidates for the role of the long-wavelength chlorophylls. The red-most chlorophylls in PSI trimers of the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus can be formed as a result of interaction of pigments peripherally localized on different monomeric complexes within the PSI trimers. Long-wavelength chlorophylls affect weakly energy equilibration within the heterogeneous PSI antenna, but they significantly delay energy trapping by P700. When the reaction center is open, energy absorbed by long-wavelength chlorophylls migrates to P700 at physiological temperatures, causing its oxidation. When the PSI reaction center is closed, the P700 cation radical or P700 triplet state (depending on the P700 redox state and the PSI acceptor side cofactors) efficiently quench the fluorescence of the long-wavelength chlorophylls of PSI and thus protect the complex against photodestruction.

Journal ArticleDOI
TL;DR: P polarization controlled two-color coherence photon echo studies of the reaction center complex from a purple bacterium Rhodobacter sphaeroides show that the long-lived signals arise via vibronic coupling of the bacteriopheophytin and accessory bacteriochlorophyll pigments that leads to vibrational wavepackets in the B ground electronic state.
Abstract: We describe polarization controlled two-color coherence photon echo studies of the reaction center complex from a purple bacterium Rhodobacter sphaeroides. Long-lived oscillatory signals that persist up to 2 ps are observed in neutral, oxidized, and mutant (lacking the special pair) reaction centers, for both (0°,0°,0°,0°) and (45°,-45°,90°,0°) polarization sequences. We show that the long-lived signals arise via vibronic coupling of the bacteriopheophytin (H) and accessory bacteriochlorophyll (B) pigments that leads to vibrational wavepackets in the B ground electronic state. Fourier analysis of the data suggests that the 685 cm(-1) mode of B may play a key role in the H to B energy transfer.

Journal ArticleDOI
TL;DR: The hypothesis that PioC linearly transfers electrons from iron, while cytochrome c2 is required for cyclic electron flow is supported, while Rpal_4085, despite having spectroscopic characteristics and a reduction potential similar to those of PIOC, is unable to reduce the reaction center.
Abstract: The purple bacterium Rhodopseudomonas palustris TIE-1 expresses multiple small high-potential redox proteins during photoautotrophic growth, including two high-potential iron-sulfur proteins (HiPIPs) (PioC and Rpal_4085) and a cytochrome c2. We evaluated the role of these proteins in TIE-1 through genetic, physiological, and biochemical analyses. Deleting the gene encoding cytochrome c2 resulted in a loss of photosynthetic ability by TIE-1, indicating that this protein cannot be replaced by either HiPIP in cyclic electron flow. PioC was previously implicated in photoferrotrophy, an unusual form of photosynthesis in which reducing power is provided through ferrous iron oxidation. Using cyclic voltammetry (CV), electron paramagnetic resonance (EPR) spectroscopy, and flash-induced spectrometry, we show that PioC has a midpoint potential of 450 mV, contains all the typical features of a HiPIP, and can reduce the reaction centers of membrane suspensions in a light-dependent manner at a much lower rate than cytochrome c2. These data support the hypothesis that PioC linearly transfers electrons from iron, while cytochrome c2 is required for cyclic electron flow. Rpal_4085, despite having spectroscopic characteristics and a reduction potential similar to those of PioC, is unable to reduce the reaction center. Rpal_4085 is upregulated by the divalent metals Fe(II), Ni(II), and Co(II), suggesting that it might play a role in sensing or oxidizing metals in the periplasm. Taken together, our results suggest that these three small electron transfer proteins perform different functions in the cell.

Journal ArticleDOI
TL;DR: The results of the earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in cytochrome c oxidase are presented and a new lowest-energy pathway is proposed.
Abstract: After a summary of the problem of coupling electron and proton transfer to proton pumping in cytochrome c oxidase, we present the results of our earlier and recent density functional theory calculations for the dinuclear Fe-a3–CuB reaction center in this enzyme. A specific catalytic reaction wheel diagram is constructed from the calculations, based on the structures and relative energies of the intermediate states of the reaction cycle. A larger family of tautomers/protonation states is generated compared to our earlier work, and a new lowest-energy pathway is proposed. The entire reaction cycle is calculated for the new smaller model (about 185–190 atoms), and two selected arcs of the wheel are chosen for calculations using a larger model (about 205 atoms). We compare the structural and redox energetics and protonation calculations with available experimental data. The reaction cycle map that we have built is positioned for further improvement and testing against experiment.

Journal ArticleDOI
TL;DR: The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject and show that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist.
Abstract: In this work, we use the effect of herbicides that affect the photosynthetic chain at defined sites in the photosynthetic reaction steps to derive information about the fluorescence emission of photosystems. The interpretation of spectral data from treated and control plants, after correction for light reabsorption processes, allowed us to elucidate current controversies in the subject. Results were compatible with the fact that a nonnegligible Photosystem I contribution to chlorophyll fluorescence in plants at room temperature does exist. In another aspect, variable and nonvariable chlorophyll fluorescence were comparatively tested as bioindicators for detection of both herbicides in aquatic environment. Both methodologies were appropriate tools for this purpose. However, they showed better sensitivity for pollutants disconnecting Photosystem II–Photosystem I by blocking the electron transport between them as Atrazine. Specifically, changes in the (experimental and corrected by light reabsorption) red to far red fluorescence ratio, in the maximum photochemical quantum yield and in the quantum efficiency of Photosytem II for increasing concentrations of herbicides have been measured and compared. The most sensitive bioindicator for both herbicides was the quantum efficiency of Photosystem II.

Journal ArticleDOI
TL;DR: Nine strains were used to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period.
Abstract: The D1 protein of Photosystem II (PSII) provides most of the ligating amino acid residues for the Mn4CaO5 water-oxidizing complex (WOC) and half of the reaction center cofactors, and it is present as two isoforms in the cyanobacterium Synechococcus elongatus PCC 7942. These isoforms, D1:1 and D1:2, confer functional advantages for photosynthetic growth at low and high light intensities, respectively. D1:1, D1:2, and seven point mutations in the D1:2 background that are native to D1:1 were expressed in the green alga Chlamydomonas reinhardtii. We used these nine strains to show that those strains that confer a higher yield of PSII charge separation under light-limiting conditions (where charge recombination is significant) have less efficient photochemical turnover, measured in terms of both a lower WOC turnover probability and a longer WOC cycle period. Conversely, these same strains under light saturation (where charge recombination does not compete) confer a correspondingly faster O2 evolution rate and ...

Journal ArticleDOI
TL;DR: In this article, a novel technique is presented for the deposition of photosynthetic protein complexes, by electrospraying RCs of Rhodobacter sphaeroides onto highly ordered pyrolytic graphite (HOPG) electrodes.
Abstract: Highly efficient light absorption and charge separation within the photosystem and reaction center (RC) complexes of photosynthetic plants and bacteria are of great interest for solar cell and photo detector applications, since they offer almost unity quantum yield and expected ultimate power conversion efficiencies of more than 18% and 12%, respectively. In addition, the charge separated states created by these protein complexes are very long lived compared to conventional semiconductor solar cells. In this work, a novel technique is presented for the deposition of photosynthetic protein complexes, by electrospraying RCs of Rhodobacter sphaeroides onto highly ordered pyrolytic graphite (HOPG) electrodes. Remarkably, it is shown that the RCs not only survive exposure to the high electric fields but also yield peak photocurrent densities of up to 7 μA cm−2, which is equal to the highest value reported to date.

Journal ArticleDOI
TL;DR: A significant inverse correlation between heat tolerance indexes (HTI) and Y(II) was observed and maintaining a lower photochemical activity in heat-tolerant accessions could be a crucial strategy to improve their thermotolerance.
Abstract: Heat stress affects a broad spectrum of cellular components and metabolism. The objectives of this study were to investigate the behavior of Photosystem II (PSII) in tall fescue (Festuca arundinacea Schreb) with various thermotolerance capacities and to broaden our comprehension about the relationship between thermotolerance and PSII function. Heat-tolerant and heat-sensitive accessions were incubated at 24 °C (control) and 46 °C (heat stress) for 5 h. The fluorescence transient curves (OJIP curves), slow Chl fluorescence kinetic, and light response curve were employed to study the behavior of PSII subjected to heat stress. After heat stress, performance index for energy conservation from photons absorbed by PSII antenna until the reduction of PSI acceptors (PITotal), the value of electrons produced per photon (a), and the maximal rate of electron transport (ETRmax) of heat-tolerant accessions were lower than those of heat-sensitive accessions. Relatively lower reactive oxygen species (ROS) contents were detected in heat-tolerant accessions. Simultaneously, there was a significant decline in the quantum yield of photochemical energy conversion in PS II (Y(II)), probability that a PSII Chl molecule functions as reaction center (γRC), and the increase of quantum yield for non-regulated non-photochemical energy loss (Y(NO)) in heat-tolerant accessions. Moreover, a significant inverse correlation between heat tolerance indexes (HTI) and Y(II) was observed. Therefore, maintaining a lower photochemical activity in heat-tolerant accessions could be a crucial strategy to improve their thermotolerance. This finding could be attributed to the structural difference in the reaction center, and for heat-tolerant accessions, it could simultaneously limit energy input into linear electron transport, and dissipate more energy through non-regulated non-photochemical energy loss processes.

Journal ArticleDOI
TL;DR: The control mechanism of excitation energy transfer in the PSII-FCPII complexes isolated from a diatom, Chaetoceros gracilis, as revealed by picosecond time-resolved fluorescence spectroscopy is reported, indicating the large contribution of FCPII to energy trapping and quenching.
Abstract: Fucoxanthin chlorophyll (Chl) a/c-binding protein (FCP) is a unique light-harvesting antenna in diatoms, which are photosynthesizing algae ubiquitous in aquatic environments. However, it is unknown how excitation energy is trapped and quenched in a complex consisting of photosystem II and FCP (PSII-FCPII complex). Here, we report the control mechanism of excitation energy transfer in the PSII-FCPII complexes isolated from a diatom, Chaetoceros gracilis, as revealed by picosecond time-resolved fluorescence spectroscopy. The results showed that Chl-excitation energy is harvested in low-energy Chls near/within FCPII under the 77 K conditions, whereas most of the energy is trapped in reaction center Chls in PSII under the 283 K conditions. Surprisingly, excitation energy quenching was observed in a part of PSII-FCPII complexes with the time constants of hundreds of picosecond, thus indicating the large contribution of FCPII to energy trapping and quenching. On the basis of these results, we discuss the light-harvesting strategy of diatoms.

Journal ArticleDOI
TL;DR: The results suggest the RC47 complex formed in ΔYcf48 cells is defective and that this deficiency is exacerbated if CP43 binds in the absence of Psb27.