scispace - formally typeset
Search or ask a question

Showing papers on "Quinone published in 2008"


Journal Article
TL;DR: In this paper, the interaction of oxygen, sulfur dioxide, and 4-methylcatechol was studied in a model wine containing catalytic concentrations of iron and copper in order to provide further evidence that when a catechol and oxygen interact, hydrogen peroxide and a quinone are formed, both of which react with SO2.
Abstract: The interaction of oxygen, sulfur dioxide, and 4-methylcatechol (4-MeC) was studied in a model wine containing catalytic concentrations of iron and copper in order to provide further evidence that when a catechol and oxygen interact, hydrogen peroxide and a quinone are formed, both of which react with SO2. The aerial oxidation of the catechol in the presence of benzenesulfinic acid (BSA) slowly produced the BSA-quinone adduct in high yield. It was also quickly prepared by adding ferric chloride, demonstrating that the quinone is cleanly produced in this model wine and that the catechol is rapidly oxidized by Fe(III) ions. This reaction is important in the catalytic function of the metal. The oxygen and SO2 molar reaction ratio was 1:2, which is consistent with one mole equivalent of SO2 reacting with hydrogen peroxide and a second with the quinone. When BSA was added to the system to trap the quinone the ratio was reduced to 1:1. The rate of reaction of oxygen and SO2 increased with catechol concentration. However, the rate of reaction of oxygen was also markedly accelerated by SO2 and by BSA, and it is proposed that substances that react with quinones accelerate catechol autoxidation. When 4-MeC was oxidized in the presence of SO2, ~38% of the quinone that was formed reacted with bisulfite to produce the sulfonic acid adduct and most of the remainder was reduced back to the catechol. The O2/SO2 molar reaction ratio in two red wines was 1:~1.7, suggesting that some nucleophilic substances may be competing with bisulfite for quinones. The rate of reaction of oxygen was also accelerated by SO2 in red wine.

197 citations


Journal ArticleDOI
TL;DR: The gas-phase theoretical calculations indicate that the Tanaka Ru-dinuclear catalyst seems to maintain predominantly Ru(II) centers while the quinone ligands and water moiety are involved in redox reactions throughout the entire catalytic cycle for water oxidation.
Abstract: Tanaka and co-workers reported a novel dinuclear Ru complex, [Ru2(OH)2(3,6-Bu2Q)2(btpyan)](SbF6)2 (3,6-Bu2Q = 3,6-ditert-butyl-1,2-benzoquinone, btpyan = 1,8-bis(2,2′:6′,2″-terpyrid-4′-yl)anthracene), that contains redox active quinone ligands and has an excellent electrocatalytic activity for water oxidation when immobilized on an indium-tin-oxide electrode (Inorg. Chem., 2001, 40, 329–337). The novel features of the dinuclear and related mononuclear Ru species with quinone ligands, and comparison of their properties to those of the Ru analogues with the bpy ligand (bpy = 2,2′-bipyridine) replacing quinone, are summarized here together with new theoretical and experimental results that show striking features for both the dinuclear and mononuclear species. The identity and oxidation state of key mononuclear species, including the previously reported oxyl radical, have been reassigned. Our gas-phase theoretical calculations indicate that the Tanaka Ru-dinuclear catalyst seems to maintain predominantly Ru(I...

188 citations


Journal ArticleDOI
TL;DR: It is shown that stable, approximately 100 nm diameter liposomes can be made from previously unreported quinone-dioleoyl phosphatidylethanolamine (Q-DOPE) lipids, and complete payload release (quenched fluorescent dye) from Q-Dope liposome occurs upon their redox activation when the quin one headgroup possesses specific substituents.
Abstract: An exciting new direction in responsive liposome research is endogenous triggering of liposomal payload release by overexpressed enzyme activity in affected tissues and offers the unique possibility of active and site-specific release. Bringing to fruition the fully expected capabilities of this new class of triggered liposomal delivery system requires a collection of liposome systems that respond to different upregulated enzymes; however, a relatively small number currently exist. Here we show that stable, approximately 100 nm diameter liposomes can be made from previously unreported quinone-dioleoyl phosphatidylethanolamine (Q-DOPE) lipids, and complete payload release (quenched fluorescent dye) from Q-DOPE liposomes occurs upon their redox activation when the quinone headgroup possesses specific substituents. The key component of the triggerable, contents-releasing Q-DOPE liposomes is a "trimethyl-locked" quinone redox switch attached to the N-terminus of DOPE lipids that undergoes a cleavage event upon two-electron reduction. Payload release by aggregation and leakage of "uncapped" Q-DOPE liposomes is supported by results from liposomes wherein deliberate alteration of the "trimethyl-locked" switch completely deactivates the redox-destructible phenomena (liposome opening). We expect that Q-DOPE liposomes and their variants will be important in treatment of diseases with associated tissues that overexpress quinone reductases, such as cancers and inflammatory diseases, because the quinone redox switch is a known substrate for this group of reductases.

185 citations


Journal ArticleDOI
TL;DR: The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.
Abstract: In this paper, we attempt to construct a simple and sensitive detection method for both phenolic compounds and hydrogen peroxide, with the successful combination of the unique property of quantum dots and the specificity of enzymatic reactions. In the presence of H2O2 and horseradish peroxidase, phenolic compounds can quench quantum dots' photoluminescence efficiently, and the extent of quenching is severalfold to more than 100-fold increase. Quinone intermediates produced from the enzymatic catalyzed oxidation of phenolic compounds were believed to play the main role in the photoluminescence quenching. Using a quantum dots−enzyme system, the detection limits for phenolic compounds and hydrogen peroxide were detected to be ∼10-7 mol L-1. The coupling of efficient quenching of quantum dot photoluminescence by quinone and the effective enzymatic reactions make this a simple and sensitive method for phenolic compound detection and great potential in the development of H2O2 biosensors for various analytes.

177 citations


Journal ArticleDOI
TL;DR: This Perspective briefly reviews the structure and mechanism, physiological role, and upregulation and induction of the enzyme, but focuses on the synthesis of new heterocyclic quinones and their metabolism by recombinant human NQO1.
Abstract: The quinone reductase enzyme NAD(P)H: quinone oxidoreductase 1 (NQO1) is a ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones. This Perspective briefly reviews the structure and mechanism, physiological role, and upregulation and induction of the enzyme, but focuses on the synthesis of new heterocyclic quinones and their metabolism by recombinant human NQO1. Thus a range of indolequinones, some of which are novel analogues of mitomycin C, benzimidazolequinones, benzothiazolequinones and quinolinequinones have been prepared and evaluated, leading to detailed knowledge of the structural requirements for efficient metabolism by the enzyme. Potent mechanism-based inhibitors (suicide substrates) of NQO1 have also been developed. These indolequinones irreversibly alkylate the protein, preventing its function both in standard enzyme assays and also in cells. Some of these quinones are also potent inhibitors of growth of human pancreatic cancer cells, suggesting a potential role for such compounds as therapeutic agents.

133 citations


Journal ArticleDOI
TL;DR: A concise synthesis of rubioncolin B is described, which features an unprecedented intramolecular Diels-Alder reaction involving an ortho-quinone methide and a naphthofuran moiety.
Abstract: A concise synthesis of rubioncolin B is described, which features an unprecedented intramolecular Diels−Alder reaction involving an ortho-quinone methide and a naphthofuran moiety. The ortho-quinone methide is generated through a surprisingly facile tautomerization of a para-quinone.

109 citations


Journal ArticleDOI
TL;DR: Bioactivity-guided fractionation of a dichloromethane-soluble extract of Garcinia mangostana fruits has led to the isolation and identification of five compounds, including two xanthones, 1,2-dihydro-1,8,10-trihydroxy-2-(2-hydroxypropan-2-yl)-9-(3-methylbut- 2-enyl)furo[3, 2-a].

107 citations


Journal ArticleDOI
TL;DR: M mammalian quinone reductases emerge as central molecular switches that control the lifespan of transcription factors and hence participate in the development of apoptosis and cell transformation, suggesting a role beyond detoxication of quinones and involvement in the oxygen stress response.
Abstract: Quinones are abundant cyclic organic compounds present in the environment as well as in proand eukaryotic cells Several species have been shown to possess enzymes that afford the two-electron reduction to the hydroquinone form in an attempt to avoid the generation of one-electron reduced semiquinone known to cause oxidative stress These enzymes utilize a flavin cofactor, either FMN or FAD, to transfer a hydride from an electron donor, such as NAD(P)H, to a quinone substrate This family of flavin-dependent quinone reductases shares a flavodoxin-like structure and reaction mechanism pointing towards a common evolutionary origin Recent studies of their physiological functions in eukaryotes suggest a role beyond detoxication of quinones and involvement in the oxygen stress response Accordingly, mammalian quinone reductases emerge as central molecular switches that control the lifespan of transcription factors, such as p53, and hence participate in the development of apoptosis and cell transformation

104 citations


Journal ArticleDOI
TL;DR: Results indicate that removal of phenol compounds is caused by their tyrosinase‐catalyzed oxidation to the corresponding quinone derivatives and the subsequent chemical adsorption on the chitosan film.
Abstract: Enzymatic removal of various phenol compounds from artificial wastewater was undertaken by the combined use of mushroom tyrosinase (EC 1.14.18.1) and chitosan beads as function of pH value, temperature, tyrosinase dose, and hydrogen peroxide-to-substrate ratio. Chitosan film incubated in a p-crersol+tyrosinase mixture had the main peaks at 400-470 nm assigned to chemically adsorbed quinone derivatives, which increased over the immersion time. These results indicate that removal of phenol compounds is caused by their tyrosinase-catalyzed oxidation to the corresponding quinone derivatives and the subsequent chemical adsorption on the chitosan film. The optimum conditions for quinone adsorption were determined to be pH 7 and 45 degrees C for p-cresol. Some alkyl-substituted phenol compounds were removed by adsorption of quinone derivatives enzymatically generated on the chitosan beads, and the % removal for p-cresol, 4-ethylphenol, 4-n-propylphenol, 4-n-butylphenol, and p-chlorophenol went up to 93%. In addition, 4-tert-butylphenol underwent tyrosinase-catalyzed oxidation in the presence of hydrogen peroxide. This procedure was applicable to removal of chlorophenols and alkyl-substituted phenols.

97 citations


Journal ArticleDOI
TL;DR: The data show that the thiol‐(S)‐alkylation reaction with protein and non‐protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.
Abstract: Quinones are highly toxic naturally occurring thiol-reactive compounds. We have previously described novel pathways for quinone detoxification in the Gram-positive bacterium Bacillus subtilis. In this study, we have investigated the extent of irreversible and reversible thiol modifications caused in vivo by electrophilic quinones. Exposure to toxic benzoquinone (BQ) concentrations leads to depletion of numerous Cys-rich cytoplasmic proteins in the proteome of B. subtilis. Mass spectrometry and immunoblot analyses demonstrated that these BQ-depleted proteins represent irreversibly damaged BQ aggregates that escape the two-dimensional gel separation. This enabled us to quantify the depletion of thiol-containing proteins which are the in vivo targets for thiol-(S)-alkylation by toxic quinone compounds. Metabolomic approaches confirmed that protein depletion is accompanied by depletion of the low-molecular-weight (LMW) thiol cysteine. Finally, no increased formation of disulphide bonds was detected in the thiol-redox proteome in response to sublethal quinone concentrations. The glyceraldehyde-3-phosphate dehydrogenase (GapA) was identified as the only new target for reversible thiol modifications after exposure to toxic quinones. Together our data show that the thiol-(S)-alkylation reaction with protein and non-protein thiols is the in vivo mechanism for thiol depletion and quinone toxicity in B. subtilis and most likely also in other bacteria.

89 citations


Journal ArticleDOI
TL;DR: The data point to futile redox cycling as being one mechanism by which oxygenated PCBs can lead to the formation of reactive oxygen species, but this is most efficient in the presence of SOD.
Abstract: Polychlorinated biphenyls (PCBs) can be oxygenated to form very reactive hydroquinone and quinone products. A guiding hypothesis in the PCB research community is that some of the detrimental health effects of some PCBs are a consequence of these oxygenated forms undergoing one-electron oxidation or reduction, generating semiquinone radicals (SQ (*-)). These radicals can enter into a futile redox cycle resulting in the formation of reactive oxygen species, that is, superoxide and hydrogen peroxide. Here, we examine some of the properties and chemistry of these semiquinone free radicals. Using electron paramagnetic resonance (EPR) to detect SQ (*-) formation, we observed that (i) xanthine oxidase can reduce quinone PCBs to the corresponding SQ (*-); (ii) the heme-containing peroxidases (horseradish and lactoperoxidase) can oxidize hydroquinone PCBs to the corresponding SQ (*-); (iii) tyrosinase acting on PCB ortho-hydroquinones leads to the formation of SQ (*-); (iv) mixtures of PCB quinone and hydroquinone form SQ (*-) via a comproportionation reaction; (v) SQ (*-) are formed when hydroquinone-PCBs undergo autoxidation in high pH buffer (approximately >pH 8); and, surprisingly, (vi) quinone-PCBs in high pH buffer can also form SQ (*-); (vii) these observations along with EPR suggest that hydroxide anion can add to the quinone ring; (viii) H 2 O 2 in basic solution reacts rapidly with PCB-quinones; and (ix) at near-neutral pH SOD can catalyze the oxidization of PCB-hydroquinone to quinone, yielding H 2 O 2. However, using 5,5-dimethylpyrroline-1-oxide (DMPO) as a spin-trapping agent, we did not trap superoxide, indicating that generation of superoxide from SQ (*-) is not kinetically favorable. These observations demonstrate multiple routes for the formation of SQ (*-) from PCB-quinones and hydroquinones. Our data also point to futile redox cycling as being one mechanism by which oxygenated PCBs can lead to the formation of reactive oxygen species, but this is most efficient in the presence of SOD.

Journal ArticleDOI
TL;DR: In this paper, the synthesis and properties of two closely related boron dipyrromethene (BODIPY) derived dyads, incorporating redox-active quinone units appended at the meso position, are described.

Book ChapterDOI
TL;DR: Quinone oxidoreductases metabolically detoxifies vitamin K3 and protects cells against oxidative stress and other adverse effects, and future studies are also required to identify the enzymes that catalyze high affinity reduction of vitamin K1 and K2 to hydroquinone for use in gamma-carboxylation reactions.
Abstract: Vitamin K1, K2, and K3 are essential nutrients associated with blood clotting and bone metabolism. Quinone oxidoreductases [NAD(P)H:quinone oxidoreductase 1 (NQO1) and NRH:quinone oxidoreductase 2 (NQO2)] are among the selected enzymes that catalyze reduction of vitamin K to vitamin K hydroquinone. NQO1 catalyzes high affinity reduction of vitamin K3 but has only weak affinity for reduction of vitamin K1 and K2. Vitamin K hydroquinone serves as a cofactor for vitamin K gamma-carboxylase that catalyzes gamma-carboxylation of specific glutamic acid residues in Gla-factors/proteins leading to their activation and participation in blood clotting and bone metabolism. Concomitant with Gla modification, a reduced vitamin K molecule is converted to vitamin K epoxide, which is converted back to vitamin K by the enzyme vitamin K epoxide reductase to complete vitamin K cycle. Vitamin K is also redox cycled. One-electron reduction of vitamin K3 leads to the formation of semiquinone that in the presence of oxygen is oxidized back to vitamin K3. Oxygen is reduced to generate reactive oxygen species (ROS) that causes oxidative stress and cytotoxicity. Vitamin K is used as radiation sensitizer or in mixtures with other chemotherapeutic drugs to treat several types of cancer. ROS generated in redox cycling contributes to anticancer activity of vitamin K. NQO1 competes with enzymes that redox cycle vitamin K and catalyzes two-electron reduction of vitamin K3 to hydroquinone. This skips formation of semiquinone and ROS. Therefore, NQO1 metabolically detoxifies vitamin K3 and protects cells against oxidative stress and other adverse effects. On the contrary, NQO2 catalyzes metabolic activation of vitamin K3 leading to cytotoxicity. The role of NQO1 and NQO2 in metabolic detoxification and/or activation of vitamin K1 and K2 remains to be determined. Future studies are also required to identify the enzymes that catalyze high affinity reduction of vitamin K1 and K2 to hydroquinone for use in gamma-carboxylation reactions.

Journal ArticleDOI
TL;DR: Among the compounds, those with one and two pyridine moieties fused to the quinone system have shown the best effect.

Journal ArticleDOI
TL;DR: The oxidations of primary aromatic amines were investigated and cuprous chloride-air system can catalyze the oxidation to azo derivatives, anils, and/or quinone anils.

Journal ArticleDOI
TL;DR: In this article, three conjugated polymers of the type (−spacer−C≡C−PtL2−C−)n, with spacer = para- and ortho-bis(diphenyl(tetramethoxy)quinone diimine) and L = PEt3, were synthesized as the cis- and trans-isomers about the Pt.

Journal ArticleDOI
TL;DR: The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared and kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared.
Abstract: Quinones such as ubiquinone are the lipid soluble electron and proton carriers in the membranes of mitochondria, chloroplasts and oxygenic bacteria. Quinones undergo controlled redox reactions bound to specific sites in integral membrane proteins such as the cytochrome bc1 oxidoreductase. The quinone reactions in bacterial photosynthesis are amongst the best characterized, presenting a model to understand how proteins modulate cofactor chemistry. The free energy of ubiquinone redox reactions in aqueous solution and in the QA and QB sites of the bacterial photosynthetic reaction centers (RCs) are compared. In the primary QA site ubiquinone is reduced only to the anionic semiquinone (Q•−) while in the secondary QB site the product is the doubly reduced, doubly protonated quinol (QH2). The ways in which the protein modifies the relative energy of each reduced and protonated intermediate are described. For example, the protein stabilizes Q•− while destabilizing Q= relative to aqueous solution through electrostatic interactions. In addition, kinetic and thermodynamic mechanisms for stabilizing the intermediate semiquinones are compared. Evidence for the protein sequestering anionic compounds by slowing both on and off rates as well as by binding the anion more tightly is reviewed.

Journal ArticleDOI
TL;DR: Triazolophthalazine analogues are designed in order to introduce more nitrogens on the heterocyclic quinones to show considerably higher cytotoxicity than that of doxorubicin.

Journal ArticleDOI
TL;DR: Results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

Journal ArticleDOI
TL;DR: The synthetic routes employed and the characterization of the reference standards for these blood metabolites as well as additional postulated structures, which were not confirmed as metabolites, are disclosed.

Journal ArticleDOI
TL;DR: The study of net enthalpy changes of reactions reveals that once the phenoxyl radical is present, the corresponding quinone is rapidly formed, so that quin one formation may be ultimately responsible for toxicity of EDG-phenols.
Abstract: Experimental studies of the "extended toxicity" of substituted phenols are mainly of two types: the toxicity due to phenoxyl radical formation and the toxicity caused by metabolites, for example, the formation of quinones. Quantitative structure-activity relationship (QSAR) studies of phenol toxicity have dealt with the formation of phenoxyl radicals using bond dissociation enthalpy (BDE) of parent phenols, have obtained good correlations with experimental data, and have concluded that phenoxyl radicals are the toxic agent. However, the actual toxic mechanism has remained poorly defined. In this study, we follow the metabolic pathways of monosubstituted phenols to their quinone end products and calculate enthalpy changes for all relevant reactions. These enthalpy changes are first used as descriptors for a QSAR analysis. Many of these new descriptors, including some relevant to quinone formation, are highly correlated with the BDE values of the parent phenols. Therefore, a QSAR analysis by itself is inconclusive as to the mechanism of toxicity. To better define the problem, we have returned to a detailed analysis of net enthalpy changes. We show that the formation of phenoxyl radical is the rate-determining step: This step is slow for electron-withdrawing group substituted phenols (EWG-phenols), whereas it is fast for electron-donating group substituted phenols (EDG-phenols). The study of net enthalpy changes of reactions reveals that once the phenoxyl radical is present, the corresponding quinone is rapidly formed, so that quinone formation may be ultimately responsible for toxicity of EDG-phenols. We then demonstrate how the suggested mechanism (quinone formation) is successful in predicting the toxicity of some complex phenols, which are predicted poorly using the phenoxyl radical argument. We also discuss the toxicities of some estrogens in light of the quinone mechanism.

Journal ArticleDOI
TL;DR: Compound 1, an electron donor-acceptor compound with N,N-dimethylaniline and quinone units, shows a strong intramolecular charge transfer band around 582nm; but, it decreased after addition of either cysteine (Cys) or glutathione (GSH).

Journal ArticleDOI
TL;DR: A new class of redox-active ligands is now available with the potential for applications both in catalysis and in materials science.
Abstract: The synthesis, structural characterisation and coordination behaviour of mono- and ditopic p-hydroquinone-based bis(pyrazol-1-yl)methane ligands is described (i.e., 2-(pz2CH)C6H3(OH)2 (2a), 2-(pz2CH)-6-(tBu)C6H2(OH)2 (2b), 2-(pz2CH)-6-(tBu)C6H2(OSiiPr3)(OH) (2c), 2,5-(pz2CH)2C6H2(OH)2 (4)). Ligands 2a, 2b and 4 can be oxidised to their p-benzoquinone state on a preparative scale (2a ox, 2b ox, 4 ox). An octahedral Ni II complex [trans-Ni(2c)2] and square-planar Pd II complexes [Pd2bCl2] and [Pd2b ox Cl2] have been prepared. In the two Pd II species, the ligands are coordinated only through their pyrazolyl rings. The fact that [Pd2bC12] and [Pd2b oxC12] are isolable compounds proves that redox transitions involving the p-quinone substituent are fully reversible. In [Pd2b oxCl2], the methine proton is highly acidic and can be abstracted with bases as weak as NEt(3). The resulting anion dimerises to give a dinuclear macrocyclic Pd II complex, which has been structurally characterised. The methylated ligand 2-(pz2CMe)C6H3O2 (11 ox) and its Pd II complex [Pd11 oxCl2] are base-stable. A new class of redox-active ligands is now available with the potential for applications both in catalysis and in materials science.

Journal ArticleDOI
TL;DR: The homogeneous rate constants of the chemical reaction interposed between electron transfers were estimated by comparing the experimental cyclic voltammetric curves with the digitally simulated ones.
Abstract: Electrochemical oxidation of catechols has been studied in the presence of Meldrum's acid derivatives as nucleophiles in aqueous solution, by means of cyclic voltammetry and controlled-potential coulometry. Catechols in the Michael addition reaction react with Meldrum's acids to form adducts that can undergo electrooxidation. Such products were obtained in good yields as confirmed by controlled potential electrosynthesis. Such products can be generated in aqueous solutions by means of electrosynthesis, using a carbon electrode in an undivided cell. Furthermore, the homogeneous rate constants of the chemical reaction interposed between electron transfers were estimated by comparing the experimental cyclic voltammetric curves with the digitally simulated ones.

Journal ArticleDOI
TL;DR: Quinoid inhibitors of Cdc25B were designed based on the Linear Combination of Atomic Potentials (LCAP) methodology but the biological activities and hydrogen peroxide generation in reducing media of three synthetic models did not correlate with the quinone half-wave potential, E(1/2).
Abstract: Quinoid inhibitors of Cdc25B were designed based on the Linear Combination of Atomic Potentials (LCAP) methodology. In contrast to a published hypothesis, the biological activities and hydrogen peroxide generation in reducing media of three synthetic models did not correlate with the quinone half-wave potential, E1/2.

Journal ArticleDOI
TL;DR: A fully dianisylaminophenylated aza[1(4)]metacyclophane has been synthesized that exhibits four reversible two-electron oxidation processes, and its dicationic and tetracationic species have been found to be in spin-triplet and spin-quintet states.

Journal ArticleDOI
TL;DR: In this article, a self-assembled 5-hydroxy-3-hexanedithiol-1,4-naphthoquinone (JUG thio) was selfassembled on gold and the surface coverage is 2.2 × 10 −10 ǫ cm −2, consistent with a dense monolayer.

Journal ArticleDOI
TL;DR: It can be concluded that covalent interactions of amino side chains with phenolic compounds could contribute to the reduction of the allergenic potential of certain food proteins.
Abstract: High-performance liquid chromatography (HPLC) coupled to electrospray ionization tandem mass spectrometry (ESI-MS n ) was used to study the covalent interactions between chlorogenic acid (CQA) quinone and two amino acid derivatives, tert-butyloxycarbonyl-L-lysine and N-acetyl-L-cysteine. In a model system at pH 7.0, the formation of covalent addition products was demonstrated for both derivatives. The addition product of CQA dimer and tert-butyloxycarbonyl-L-lysine was characterized by Lc/Ms n as a benzacridine structure. For N-acetyl-L-cysteine, mono- and diaddition products at the thiol group with CQA quinone were found. In apple juice at pH 3.6, covalent interactions of CQA quinone were observed only with N-acetyl-L-cysteine. Taking together these results and those reported by other groups it can be concluded that covalent interactions of amino side chains with phenolic compounds could contribute to the reduction of the allergenic potential of certain food proteins.

Journal ArticleDOI
TL;DR: 3D structure comparison revealed that AZR shared a common overall topology with mammal NAD(P)H/quinone oxidoreductase NQO1 and quinone reductase AZR from Rhodobacter sphaeroides, and significantly higher survival rates were obtained in Escherichia coli YB overexpressing AZR than in the control strain when treated by heat shock and oxidative stressors.
Abstract: Quinone reductase activity of azoreductase AZR from Rhodobacter sphaeroides was reported. High homologies were found in the cofactor/substrate-binding regions of quinone reductases from different domains. 3D structure comparison revealed that AZR shared a common overall topology with mammal NAD(P)H/quinone oxidoreductase NQO1. With menadione as substrate, the optimal pH value and temperature were pH 8–9 and 50°C, respectively. Following the ping-pong kinetics, AZR transferred two electrons from NADPH to quinone substrate. It could reduce naphthoquinones and anthraquinones, such as menadione, lawsone, anthraquinone-2-sulfonate, and anthraquinone-2,6-disulfonate. However, no activity was detected with 1,4-benzoquinone. Dicoumarol competitively inhibited AZR’s quinone reductase activity with respect to NADPH, with an obtained K i value of 87.6 μM. Significantly higher survival rates were obtained in Escherichia coli YB overexpressing AZR than in the control strain when treated by heat shock and oxidative stressors such as H2O2 and menadione.

Journal ArticleDOI
TL;DR: A new water-soluble oligo(phenylenevinylene) containing a tyrosine unit (OPV-Tyr) was synthesized as a fluorescent probe to optically detect tyrosinase activity.