scispace - formally typeset
Search or ask a question

Showing papers on "Triplet state published in 2016"


Journal ArticleDOI
TL;DR: The vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation, substantiating the model of rISC.
Abstract: Knowing the underlying photophysics of thermally activated delayed fluorescence (TADF) allows proper design of high efficiency organic light-emitting diodes. We have proposed a model to describe reverse intersystem crossing (rISC) in donor–acceptor charge transfer molecules, where spin–orbit coupling between singlet and triplet states is mediated by one of the local triplet states of the donor (or acceptor). This second order, vibronically coupled mechanism describes the basic photophysics of TADF. Through a series of measurements, whereby the energy ordering of the charge transfer (CT) excited states and the local triplet are tuned in and out of resonance, we show that TADF reaches a maximum at the resonance point, substantiating our model of rISC. Moreover, using photoinduced absorption, we show how the populations of both singlet and triplet CT states and the local triplet state change in and out of resonance. Our vibronic coupling rISC model is used to predict this behaviour and describes how rISC and TADF are affected by external perturbation.

592 citations


Journal ArticleDOI
TL;DR: In this article, the TADF mechanism was introduced and crucial parameters that are necessary to optimize materials' properties, in particular, with respect to short emission decay times and high quantum yields at ambient temperature.

369 citations


Journal ArticleDOI
TL;DR: It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3CDOM* can be achieved.
Abstract: Excited triplet states of chromophoric dissolved organic matter (3CDOM*) play a major role among the reactive intermediates produced upon absorption of sunlight by surface waters. After more than two decades of research on the aquatic photochemistry of 3CDOM*, the need for improving the knowledge about the photophysical and photochemical properties of these elusive reactive species remains considerable. This critical review examines the efforts to date to characterize 3CDOM*. Information on 3CDOM* relies mainly on the use of probe compounds because of the difficulties associated with directly observing 3CDOM* using transient spectroscopic methods. Singlet molecular oxygen (1O2), which is a product of the reaction between 3CDOM* and dissolved oxygen, is probably the simplest indicator that can be used to estimate steady-state concentrations of 3CDOM*. There are two major modes of reaction of 3CDOM* with substrates, namely triplet energy transfer or oxidation (via electron transfer, proton-coupled electron transfer or related mechanisms). Organic molecules, including several environmental contaminants, that are susceptible to degradation by these two different reaction modes are reviewed. It is proposed that through the use of appropriate sets of probe compounds and model photosensitizers an improved estimation of the distribution of triplet energies and one-electron reduction potentials of 3CDOM* can be achieved.

363 citations


Journal ArticleDOI
22 Dec 2016-Nature
TL;DR: Theoretical studies have proposed various quantum spin liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed "spinons") as discussed by the authors.
Abstract: A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed 'spinons'). Here we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO4 that reveal broad spin excitations covering a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle-hole excitation of a spinon Fermi surface. Our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.

270 citations


Journal ArticleDOI
TL;DR: In this paper, a TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and the donor and acceptor units separately, the available radiative and non-radiative pathways of DPO-TxO2 have been identified.
Abstract: The key to engineering an efficient TADF emitter is to achieve a small energy splitting between a pair of molecular singlet and triplet states. This work makes important contributions towards achieving this goal. By studying the new TADF emitter 2,7-bis(phenoxazin-10-yl)-9,9-dimethylthioxanthene-S,S-dioxide (DPO-TXO2) and the donor and acceptor units separately, the available radiative and non-radiative pathways of DPO-TXO2 have been identified. The energy splitting between singlet and triplet states was clearly identified in four different environments, in solutions and solid state. The results show that DPO-TXO2 is a promising TADF emitter, having ΔEST = 0.01 eV in zeonex matrix. We further show how the environment plays a key role in the fine tuning of the energy levels of the 1CT state with respect to the donor 3LED triplet state, which can then be used to control the ΔEST energy value. We elucidate the TADF mechanism dynamics when the 1CT state is located below the 3LE triplet state which it spin orbit couples to, and we also discuss the OLED device performance with this new emitter, which shows maximum external quantum efficiency (E.Q.E.) of 13.5% at 166 cd m−2.

164 citations


Journal ArticleDOI
TL;DR: The recently developed particle–particle random-phase approximation is used in combination with a diradical analysis to unveil the nature of higher acenes' ground- and electronic excited states, and the excitation energies are presented.
Abstract: Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1 A g ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3 B 2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1 B 2u is a zwitterionic state to the short axis. The excited 1 A g state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1 B 2u and excited 1 A g states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

151 citations


Journal ArticleDOI
TL;DR: This work combines femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general.
Abstract: Elucidating the photophysical mechanisms in sulfur-substituted nucleobases (thiobases) is essential for designing prospective drugs for photo- and chemotherapeutic applications. Although it has long been established that the phototherapeutic activity of thiobases is intimately linked to efficient intersystem crossing into reactive triplet states, the molecular factors underlying this efficiency are poorly understood. Herein we combine femtosecond transient absorption experiments with quantum chemistry and nonadiabatic dynamics simulations to investigate 2-thiocytosine as a necessary step to unravel the electronic and structural elements that lead to ultrafast and near-unity triplet-state population in thiobases in general. We show that different parts of the potential energy surfaces are stabilized to different extents via thionation, quenching the intrinsic photostability of canonical DNA and RNA nucleobases. These findings satisfactorily explain why thiobases exhibit the fastest intersystem crossing lifetimes measured to date among bio-organic molecules and have near-unity triplet yields, whereas the triplet yields of canonical nucleobases are nearly zero. Sulfur-substituted nucleobases are promising photo- and chemotherapeutic drugs. Here, the authors unravel the electronic and structural aspects that lead to the ultrafast population of triplet states in these molecules, providing an explanation for their efficiency as photosensitizers.

133 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a twisted-ICT framework for a flattened molecular backbone and introduced a strong acceptor possessing nπ* transition character, hypsochromic color, a large radiative rate (kF), and small singlet-triplet splitting energy (ΔEST) for reverse intersystem crossing from nonemissive triplet state to radiative singlet state.
Abstract: A barely reached balance between weak intramolecular-charge-transfer (ICT) and small singlet–triplet splitting energy (ΔEST) for reverse intersystem crossing from non-emissive triplet state to radiative singlet state impedes the realization of deep-blue thermally activated delayed fluorescence (TADF) materials. By discarding the twisted-ICT framework for a flattened molecular backbone and introducing a strong acceptor possessing n–π* transition character, hypsochromic color, a large radiative rate (kF), and small ΔEST are achieved simultaneously. Six molecules with a 9,9-dimethyl-10-phenyl-9,10-dihydroacridine (i-DMAc) donor are synthesized and investigated. Coinciding with time-dependent density functional theory, the reduced dihedral angles between donor (D) and acceptor (A) weaken ICT from dispersed charge density and enable a large kF from increased frontier molecular orbitals overlap. Despite the separated highest occupied (HOMO) and lowest unoccupied molecular orbital (LUMO) population, the intercalation of phenyl bridges between D–A increases kF but significantly lowers the local triplet excited state, indicating small HOMO and LUMO overlap is not a sufficient, but necessary condition for reduced ΔEST. Integrating short conjugation length and carbonyl or triazine acceptors into the complanation molecules, deep-blue TADF organic light-emitting diodes demonstrate maximum external quantum efficiencies of 11.5% and 10.9% with Commission Internationale de l'Eclairage coordinates of (0.16, 0.09) and (0.15, 0.11), respectively, which is quite close to the stringent National Television System Committee blue standard.

131 citations


Journal ArticleDOI
TL;DR: The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers, more notably, the slower relaxation of the excited triplet states in P cD-Biph and PcD-3Ph.
Abstract: Intramolecular singlet fission (ISF) is a promising photophysical process to construct more efficient light energy conversion systems as one excited singlet state converts into two excited triplet states. Herein we synthesized and evaluated bent-shaped pentacene dimers as a prototype of ISF to reveal intrinsic characters of triplet states (e.g., lifetimes of triplet excited states). In this study, meta-phenylene-bridged TIPS-pentacene dimer (PcD-3Ph) and 2,2'-bipheynyl bridged TIPS-pentacene dimer (PcD-Biph) were newly synthesized as bent-shaped dimers. In the steady-state spectroscopy, absorption and emission bands of these dimers were fully characterized, suggesting the appropriate degree of electronic coupling between pentacene moieties in these dimers. In addition, the electrochemical measurements were also performed to check the electronic interaction between two pentacene moieties. Whereas the successive two oxidation peaks owing to the delocalization were observed in a directly linked-pentacene dimer (PcD) by a single bond, the cyclic voltammograms in PcD-Biph and PcD-3Ph implied the weaker interaction compared to that of p-phenylene-bridged TIPS-pentacene dimer (PcD-4Ph) and PcD. The femtosecond and nanosecond transient absorption spectra clearly revealed the slower ISF process in bent-shaped pentacene dimers (PcD-Biph and PcD-3Ph), more notably, the slower relaxation of the excited triplet states in PcD-Biph and PcD-3Ph. Namely, the quantum yields of triplet states (ΦT) by ISF approximately remain constant (ca. 180-200%) in all dimer systems, whereas the lifetimes of the triplet excited states became much longer (up to 360 ns) in PcD-Biph as compared to PcD-4Ph (15 ns). Additionally, the lifetimes of the corresponding triplet states in PcD-Biph and PcD-3Ph were sufficiently affected by solvent viscosity. In particular, the lifetimes of PcD-Biph triplet state in THF/paraffin (1.0 μs) increased up to approximately three times as compared to that in THF (360 ns), whereas those of PcD-4Ph were quite similar in both solvent.

126 citations


Journal ArticleDOI
TL;DR: This critical review discusses different approaches towards protection of photoactive materials based on triplet excited state ensembles against deactivation by molecular oxygen though quenching and photooxidation mechanisms.
Abstract: This critical review discusses different approaches towards protection of photoactive materials based on triplet excited state ensembles against deactivation by molecular oxygen though quenching and photooxidation mechanisms. Passive protection, based on the application of barrier materials for packaging, sealing, or encapsulation of the active substances, which prevent oxygen molecules from penetration and physical contact with excited states and active protection, based on the application of oxygen scavenging species are compared. Efficiencies of different approaches together with examples and prospects of their applications are outlined.

94 citations


Journal ArticleDOI
TL;DR: It is theoretically shown that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range, and dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate.
Abstract: Experimental identification of quantum spin liquids remains a challenge, as the pristine nature is to be seen in asymptotically low temperatures. We here theoretically show that the precursor of quantum spin liquids appears in the spin dynamics in the paramagnetic state over a wide temperature range. Using the cluster dynamical mean-field theory and the continuous-time quantum Monte Carlo method, which are newly developed in the Majorana fermion representation, we calculate the dynamical spin structure factor, relaxation rate in nuclear magnetic resonance, and magnetic susceptibility for the honeycomb Kitaev model whose ground state is a canonical example of the quantum spin liquid. We find that dynamical spin correlations show peculiar temperature and frequency dependence even below the temperature where static correlations saturate. The results provide the experimentally accessible symptoms of the fluctuating fractionalized spins evincing the quantum spin liquids.

Journal ArticleDOI
TL;DR: A scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor is proposed and analysed and paves the way for the realization of integrated quantum logic elements.
Abstract: Spin chains are paradigmatic systems for the studies of quantum phases and phase transitions, and for quantum information applications, including quantum computation and short-distance quantum communication. Here we propose and analyse a scheme for conditional state transfer in a Heisenberg XXZ spin chain which realizes a quantum spin transistor. In our scheme, the absence or presence of a control spin excitation in the central gate part of the spin chain results in either perfect transfer of an arbitrary state of a target spin between the weakly coupled input and output ports, or its complete blockade at the input port. We also discuss a possible proof-of-concept realization of the corresponding spin chain with a one-dimensional ensemble of cold atoms with strong contact interactions. Our scheme is generally applicable to various implementations of tunable spin chains, and it paves the way for the realization of integrated quantum logic elements.

Journal ArticleDOI
Jiang Peng1, Xinyan Guo1, Xinpeng Jiang1, Dahui Zhao1, Yuguo Ma1 
TL;DR: Heavy-atom-free triplet photosensitizers are developed and visible-to-ultraviolet photon upconversion is realized via triplet–triplet annihilation.
Abstract: Heavy-atom-free triplet photosensitizers are developed by harnessing the thermally active triplet state of carbazolyl dicyanobenzene (CDCB) derivatives and applied to realize visible-to-ultraviolet photon upconversion (UC) via triplet–triplet annihilation (TTA). Demonstrating an annihilator-appending strategy, the designed sensitizers effectively realize TTA UC in polyurethane films with 2,7-di-tert-butylpyrene (DBP) as the annihilator/emitter. The covalently tethered DBP to CDCB is proven critical for achieving the superior sensitizing and UC performance in the solid matrix, essentially by suppressing the reverse ISC and more effectively transferring triplet excitons to free emitters.

Journal ArticleDOI
TL;DR: The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics and established the existence of a kinetic equilibrium between the two triplet states, never observed before.
Abstract: The photochemistry of benzophenone, a paradigmatic organic molecule for photosensitization, was investigated by means of surface-hopping ab initio molecular dynamics. Different mechanisms were found to be relevant within the first 600 fs after excitation; the long-debated direct (S1 → T1) and indirect (S1 → T2 → T1) mechanisms for population of the low-lying triplet state are both possible, with the latter being prevalent. Moreover, we established the existence of a kinetic equilibrium between the two triplet states, never observed before. This fact implies that a significant fraction of the overall population resides in T2, eventually allowing one to revisit the usual spectroscopic assignment proposed by transient absorption spectroscopy. This finding is of particular interest for photocatalysis as well as for DNA damages studies because both T1 and T2 channels are, in principle, available for benzophenone-mediated photoinduced energy transfer toward DNA.

Journal ArticleDOI
TL;DR: In this article, the microscopic mechanism of such a drastic decrease is elucidated from detailed computational investigation, and the radiative and non-radiative (knr) decay rates of the lowest triplet state (T1) were calculated for five representative cyclometalated iridium(III) complexes with emission color ranging from green to deep blue.
Abstract: High-efficiency deep blue organometallic phosphors are imperative to organic luminescence devices. While green iridium complexes commonly exhibit high luminescence efficiencies, the luminescence quantum efficiency always drops sharply when emission becomes deep blue. In this work, the microscopic mechanism of such a drastic decrease is elucidated from detailed computational investigation. Both radiative (kr) and non-radiative (knr) decay rates of the lowest triplet state (T1) are calculated for five representative cyclometalated iridium(III) complexes with emission color ranging from green to deep blue, based on phenylpyridyl, phenylpyrazolyl, bipyridinato, pyrimidinpyridyl, and pyrimidinprazolyl ligands. For all compounds, the T1 states are characteristic of mixed intraligand (π → π*) transition and iridium-to-ligand charge transfer (d → π*), and the increased π → π* and decreased d → π* portions lead to the blue-shifted emission of 1 < 2 < 4 < 5 < 3. Strikingly, it is found that the drastic increase of knr arising from severe intra-ligand vibration relaxations induced by the enhanced π → π* transition is mainly responsible for the droop of the phosphorescence quantum efficiency, which provides a different deactivation mechanism from the thermally-activated transformation into a dark metal-centred ligand field excited state reported in many previous studies. Compared with the well-studied compounds 1–3, the newly designed compounds 4 and 5 achieve a good balance between high efficiency and a large energy gap and are very promising as deep blue phosphors. These findings are expected to be helpful for the rational design of high-efficiency blue organometallic phosphors, especially in terms of ligands.

Journal ArticleDOI
TL;DR: It is found that the small bathochromic-shift of the absorption spectra but large red shift of the emission spectra for all dyes with increasing solvent polarity indicates the larger dipole moment of the excited state compared to ground state.
Abstract: We report the excited-state intramolecular charge transfer (ICT) characteristics of four tetrahydro[5] helicene-based imide (THHBI) derivatives with various electron-donating substitutes in different polarity of solvents using steady-state, time-resolved transient absorption (TA) spectroscopy. It is found that, the small bathochromic-shift of the absorption spectra but large red shift of the emission spectra for all dyes with increasing solvent polarity indicates the larger dipole moment of the excited state compared to ground state. The results of theoretical calculations exhibit the charge transfer from the terminal donors to helical backbone, which accounts for the degrees of red shift of the emission spectra from different extent of ICT nature. Time-resolved TA spectra recorded as a function of electron-donating substitutes and solvent polarity show the dye with stronger donors (THHBI-PhNPh2) in more polar solvent behaves faster excited-state ICT relaxation, leading to the formation of solvent-stabilized ICT state (ICT' state) from the excited ICT state; The dyes (THHBI-Ph, THHBI-PhCF3 and THHBI-PhOMe) with relative weaker donors show weaker dependence on solvent polarity, and instead of that intersystem crossing (ISC) becomes possible from ICT state to triplet state.

Journal ArticleDOI
TL;DR: By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.
Abstract: By direct imaging of singlet and triplet populations with ultrafast microscopy, it is shown that the triplet diffusion length and singlet fission yield can be simultaneously optimized for tetracene and its derivatives, making them ideal structures for application in bilayer solar cells.

Journal ArticleDOI
TL;DR: A heavy-atom-free strategy to prompt the T1 ←S1 intersystem crossing (ISC) by introducing electron-donating aryl (Ar) groups at the head positions of an electron-deficient perylenediimide (PDI) core is developed.
Abstract: Previous studies of perylenediimides (PDIs) mostly utilized the lowest singlet excited state S1. Generation of a triplet excited state (T1) in PDIs is important for applications ranging from photodynamic therapy to photovoltaics; however, it remains a formidable task. Herein, we developed a heavy-atom-free strategy to prompt the T1←S1 intersystem crossing (ISC) by introducing electron-donating aryl (Ar) groups at the head positions of an electron-deficient perylenediimide (PDI) core. We found that the ISC efficiency increases from 8 to 54 % and then to 86 % by increasing the electron-donating ability of head-substituted aryl groups from phenyl (p-PDI) to methoxyphenyl (MeO-PDI) and then to methylthioxyphenyl (MeS-PDI). By enhancing the intramolecular charge-transfer (ICT) interaction from p-PDI to MeO-PDI, and then to MeS-PDI, singlet oxygen generation via energy-transfer reactions from T1 of PDIs to 3O2 was demonstrated with the highest yield of up to 80 %. These results provide guidelines for developing new triplet-generating PDIs and related rylene diimides for optoelectronic applications.

Journal ArticleDOI
TL;DR: Quantum chemical computations reveal that T1-state benzene is excellent at H-atom abstraction, while cyclooctatetraene, aromatic in the T1 and S1 states according to Baird's rule, is unreactive.
Abstract: The first hydrogenation step of benzene, which is endergonic in the electronic ground state (S0), becomes exergonic in the first triplet state (T1). This is in line with Baird's rule, which tells that benzene is antiaromatic and destabilized in its T1 state and also in its first singlet excited state (S1), opposite to S0, where it is aromatic and remarkably unreactive. Here we utilized this feature to show that benzene and several polycyclic aromatic hydrocarbons (PAHs) to various extents undergo metal-free photochemical (hydro)silylations and transfer-hydrogenations at mild conditions, with the highest yield for naphthalene (photosilylation: 21%). Quantum chemical computations reveal that T1-state benzene is excellent at H-atom abstraction, while cyclooctatetraene, aromatic in the T1 and S1 states according to Baird's rule, is unreactive. Remarkably, also CVD-graphene on SiO2 is efficiently transfer-photohydrogenated using formic acid/water mixtures together with white light or solar irradiation under metal-free conditions.

Journal ArticleDOI
TL;DR: A global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation is presented.
Abstract: We present a global ground-state triplet potential energy surface for the N2O2 system that is suitable for treating high-energy vibrational-rotational energy transfer and collision-induced dissociation. The surface is based on multi-state complete-active-space second-order perturbation theory/minimally augmented correlation-consistent polarized valence triple-zeta electronic structure calculations plus dynamically scaled external correlation. In the multireference calculations, the active space has 14 electrons in 12 orbitals. The calculations cover nine arrangements corresponding to dissociative diatom-diatom collisions of N2, O2, and nitric oxide (NO), the interaction of a triatomic molecule (N2O and NO2) with the fourth atom, and the interaction of a diatomic molecule with a single atom (i.e., the triatomic subsystems). The global ground-state potential energy surface was obtained by fitting the many-body interaction to 54 889 electronic structure data points with a fitting function that is a permutationally invariant polynomial in terms of bond-order functions of the six interatomic distances.

Journal ArticleDOI
TL;DR: In this article, the research on different neutral Re(I) tricarbonyl complexes and corresponding applications as emitters in organic light-emitting diodes (OLEDs) is firstly systematically summarized and evaluated.

Journal ArticleDOI
TL;DR: Dynamics of the ICT process in the excited states of a push-pull biphenyl derivative, namely, 4-N,N-dimethylamino-4'-nitrobiphenyl (DNBP), an efficient NLO material, has been investigated using ultrafast transient absorption spectroscopy and the experimental results have been corroborated with DFT and TDDFT calculations.
Abstract: Organic molecules substituted with the nitro group show efficient nonlinear optical (NLO) properties, which are a consequence of the strong intramolecular charge transfer (ICT) character of the molecules because of the strong electron withdrawing nature of the nitro group and rapid responsiveness because of highly movable π-electrons. Dynamics of the ICT process in the excited states of a push-pull biphenyl derivative, namely, 4-N,N-dimethylamino-4'-nitrobiphenyl (DNBP), an efficient NLO material, has been investigated using ultrafast transient absorption spectroscopy. The experimental results have been corroborated with DFT and TDDFT calculations. In solvents of large polarity, e.g. acetonitrile, the ultrafast ICT process of DNBP is associated with the barrierless twisting of the N,N-dimethylaniline (DMA) group with respect to the nitrobenzene moiety to populate the twisted ICT (or TICT) state, and the rate of this process is solely governed by the viscosity of the medium. In solvents of moderate polarity, e.g. ethyl acetate, the rate of the twisting process is significantly slowed down and the LE and TICT states remain in equilibrium because of a low energy barrier for interconversion between these two states. By further lowering the polarity of the solvent, e.g. in dioxane, the twisting process is completely retarded. In nonpolar solvents, e.g. cyclohexane, a reverse twisting motion towards the planar geometry (i.e. the PICT process) has been evident in the excited state dynamics. In this solvent, the S1 state undergoes an ultrafast intersystem crossing to the triplet state because of its close proximity with the T2 state.

Journal ArticleDOI
TL;DR: Intersystem crossing in π-conjugated donor–acceptor–donor chromophores is controlled by the strength of the donor-acceptor interaction.
Abstract: A series of variable band-gap donor–acceptor–donor (DAD) chromophores capped with platinum(II) acetylide units has been synthesized and fully characterized by electrochemical and photophysical methods, with particular emphasis placed on probing triplet excited state properties. A counter-intuitive trend of increasing fluorescence quantum efficiency and lifetime with decreasing excited state energy (optical gap) is observed across the series of DAD chromophores. Careful study of the excited state dynamics, including triplet yields (as inferred from singlet oxygen sensitization), reveals that the underlying origin of the unusual trend in the fluorescence parameters is that the singlet–triplet intersystem crossing rate and yield decrease with decreasing optical gap. It is concluded that the rate of intersystem crossing decreases as the LUMO is increasingly localized on the acceptor unit in the DAD chromophore, and this result is interpreted as arising because the extent of spin–orbit coupling induced by the platinum heavy metal centers decreases as the LUMO is more localized on the acceptor. In addition to the trend in intersystem crossing, the results show that the triplet decay rates follow the Energy Gap Law correlation over a 1.8 eV range of triplet energy and 1000-fold range of triplet decay rates. Finally, femtosecond transient absorption studies for the DAD chromophores reveals a strong absorption in the near-infrared region which is attributed to the singlet excited state. This spectral band appears to be general for DAD chromophores, and may be a signature of the charge transfer (CT) singlet excited state.

Journal ArticleDOI
TL;DR: In this paper, two homo Ru(II) and Ir(III) complexes (Ru-2 and Ir-2), containing a bridging boron-dipyrromethene (BODIPY) chromophore were synthesized.
Abstract: Two novel homo Ru(II) and Ir(III) complexes (Ru-2 and Ir-2), containing a bridging boron-dipyrromethene (BODIPY) chromophore were synthesised. The BODIPY moiety was covalently attached to the coordinated bipyridine (bpy) or phenylpyridine (ppy) via two acetylene linkers to produce bimetallic-complexes, which were employed as triplet photosensitizers. Both Ru-2 and Ir-2 absorb strongly in the visible region (λabs = 570 nm, e = 113 317 dm−3 mol−1 cm−1 for Ru-2 and λabs = 567 nm, e = 105 713 dm−3 mol−1 cm−1 for Ir-2). Due to a strong intraligand feature, and a small contribution from the metal, to the triplet state, the triplet-state lifetimes are particularly long for both complexes (1316.0 μs for Ru-2, 630.7 μs for Ir-2). High upconversion quantum yields were found (19.1% for Ru-2 and 25.5% for Ir-2). The intermolecular triplet energy transfer between the metal centres were studied using nanosecond time-resolved transient absorption spectroscopy (ΦTTET = 94% Ru-2 and ΦTTET = 86% Ir-2). Knowing the desirable photophysical properties of the complexes, both were then tested for their application in photodynamic therapy (PDT).

Journal ArticleDOI
TL;DR: In this article, the active role of phenothiazine excited states in photo-induced metal-free atom transfer radical polymerization (ATRP) was investigated by using laser flash photolysis, fluorescence, phosphorescence and electron spin resonance spectroscopy.

Journal ArticleDOI
TL;DR: In this paper, the magnetic structure of the most active perovskites for the oxygen evolution reaction was studied. But the magnetic properties of the perovs were not investigated.
Abstract: We have performed an in-depth ab initio study of the magnetic structure within the most active perovskites for the oxygen evolution reaction. In all cases, the ground state exhibits an extended antiferromagnetic coupling in the unit cell. Layered antiparallel alignment of the magnetic moments appears to be related to their electrocatalytic activity. All the perovskites calculated within this paper show space-separated charge-transport channels depending on the spin orientation. Comparing the electronic structures with the reported activities, we find a direct correlation between the magnetic accumulation on the spin channels in the bulk material and the catalytic activity. We discuss the possible implications of such observations in terms of magnetic interactions. During oxygen evolution in water electrolysis, reactants and products do not preserve spin. For triplet state oxygen to evolve, the catalyst at the anode can speed up the reaction if it is able to balance the magnetism of the oxygen molecule by extracting electrons with an opposite magnetic moment, conserving the overall spin.

Journal ArticleDOI
TL;DR: The photophysics of thioxanthone dissolved in cyclohexane was studied by femtosecond fluorescence and transient absorption spectroscopy with the aid of quantum chemically computed spectral signatures and rate constants for intersystem crossing.
Abstract: The photophysics of thioxanthone dissolved in cyclohexane was studied by femtosecond fluorescence and transient absorption spectroscopy. From these experiments two time constants of ∼400 fs and ∼4 ps were retrieved. With the aid of quantum chemically computed spectral signatures and rate constants for intersystem crossing, the time constants were assigned to the underlying processes. Ultrafast internal conversion depletes the primarily excited 1ππ* state within ∼400 fs. The 1nπ* state populated thereby undergoes fast intersystem crossing (∼4 ps) yielding the lowest triplet state of 3ππ* character.

Journal ArticleDOI
TL;DR: In this article, a series of carbazolyl-phthalonitrile derivatives were calculated at the levels of density functional theory (DFT) and time-dependent (TD) DFT using the gap-tuned, range-separated ωB97X functional.
Abstract: The singlet–triplet energy differences, ΔEST, of a series of carbazolyl-phthalonitrile (CzPN) derivatives were calculated at the levels of density functional theory (DFT) and time-dependent (TD) DFT using the gap-tuned, range-separated ωB97X functional. The studied CzPN derivatives include 4-(9H-carbazol-9-yl)phthalonitrile (CzPN), 4,5-di(9H-carbazol-9-yl)phthalonitrile (2CzPN), 3,4,5-tris(9H-carbazol-9-yl)phthalonitrile (3CzPN), and 3,4,5,6-tetra(9H-carbazol-9-yl)phthalonitrile (4CzPN). As additional Cz substituents are introduced, both the HOMO–LUMO energy gap, ΔEH–L, and ΔEST continuously decrease. Both natural transition orbital analysis and a quantitative assessment of the local-excitation (LE) and charge-transfer (CT) contributions to the excited states consistently demonstrate that the S1 states of all of the CzPN derivatives have a predominantly CT nature. In contrast, in the T1 state, the LE feature is dominant, but the CT character increases with the number of Cz groups. The decomposition of exc...

Journal ArticleDOI
TL;DR: It is demonstrated that the proposed NMR technique to create singlet spin order from longitudinal spin magnetization in coupled spin-½ pairs works perfectly for both strongly and weakly coupled spin pairs, providing a conversion efficiency which is equal to the theoretical maximum.

Journal ArticleDOI
Yafei Luo1, Yanyan Xu1, Wenting Zhang1, Wenqian Li1, Ming Li1, Rongxing He1, Wei Shen1 
TL;DR: In this article, the radiative and non-radiative decay processes of four cyclometalated (C∧C*) platinum(II) N-heterocyclic carbene (NHC) complexes were unveiled via density functional theory and time-dependent density functional theories.
Abstract: In this article, the radiative and nonradiative decay processes of four cyclometalated (C∧C*) platinum(II) N-heterocyclic carbene (NHC) complexes were unveiled via density functional theory and time-dependent density functional theory. In order to explore the influence of π-conjugation on quantum yields of (NHC)Pt(acac) (NHC═N-heterocyclic carbene, acac = acetylacetonate) complexes, the factors that determine the radiative process, including singlet–triplet splitting energies, transition dipole moments, and spin–orbit coupling (SOC) matrix elements between the lowest triplet states and singlet excited states were calculated. In addition, the SOC matrix elements between the lowest triplet state and the ground state as well as Huang–Rhys factors were also computed to describe the temperature-independent nonradiative decay processes. Also, the triplet potential energy surfaces were investigated to elucidate the temperature-dependent nonradiative decay processes. The results indicate that complex Pt-1 has hig...