scispace - formally typeset
Search or ask a question

Showing papers by "Carlos Cordon-Cardo published in 2017"


Journal ArticleDOI
14 Jun 2017-Nature
TL;DR: It is identified that the F-box protein FBXL2 binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria and provide proof-of-principle that inhibiting IP3 R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.
Abstract: In response to environmental cues that promote IP3 (inositol 1,4,5-trisphosphate) generation, IP3 receptors (IP3Rs) located on the endoplasmic reticulum allow the 'quasisynaptical' feeding of calcium to the mitochondria to promote oxidative phosphorylation. However, persistent Ca2+ release results in mitochondrial Ca2+ overload and consequent apoptosis. Among the three mammalian IP3Rs, IP3R3 appears to be the major player in Ca2+-dependent apoptosis. Here we show that the F-box protein FBXL2 (the receptor subunit of one of 69 human SCF (SKP1, CUL1, F-box protein) ubiquitin ligase complexes) binds IP3R3 and targets it for ubiquitin-, p97- and proteasome-mediated degradation to limit Ca2+ influx into mitochondria. FBXL2-knockdown cells and FBXL2-insensitive IP3R3 mutant knock-in clones display increased cytosolic Ca2+ release from the endoplasmic reticulum and sensitization to Ca2+-dependent apoptotic stimuli. The phosphatase and tensin homologue (PTEN) gene is frequently mutated or lost in human tumours and syndromes that predispose individuals to cancer. We found that PTEN competes with FBXL2 for IP3R3 binding, and the FBXL2-dependent degradation of IP3R3 is accelerated in Pten-/- mouse embryonic fibroblasts and PTEN-null cancer cells. Reconstitution of PTEN-null cells with either wild-type PTEN or a catalytically dead mutant stabilizes IP3R3 and induces persistent Ca2+ mobilization and apoptosis. IP3R3 and PTEN protein levels directly correlate in human prostate cancer. Both in cell culture and xenograft models, a non-degradable IP3R3 mutant sensitizes tumour cells with low or no PTEN expression to photodynamic therapy, which is based on the ability of photosensitizer drugs to cause Ca2+-dependent cytotoxicity after irradiation with visible light. Similarly, disruption of FBXL2 localization with GGTi-2418, a geranylgeranyl transferase inhibitor, sensitizes xenotransplanted tumours to photodynamic therapy. In summary, we identify a novel molecular mechanism that limits mitochondrial Ca2+ overload to prevent cell death. Notably, we provide proof-of-principle that inhibiting IP3R3 degradation in PTEN-deregulated cancers represents a valid therapeutic strategy.

179 citations


Journal ArticleDOI
28 Jun 2017-Nature
TL;DR: It is shown that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity.
Abstract: Activation of the PTEN-PI3K-mTORC1 pathway consolidates metabolic programs that sustain cancer cell growth and proliferation. Here we show that mechanistic target of rapamycin complex 1 (mTORC1) regulates polyamine dynamics, a metabolic route that is essential for oncogenicity. By using integrative metabolomics in a mouse model and human biopsies of prostate cancer, we identify alterations in tumours affecting the production of decarboxylated S-adenosylmethionine (dcSAM) and polyamine synthesis. Mechanistically, this metabolic rewiring stems from mTORC1-dependent regulation of S-adenosylmethionine decarboxylase 1 (AMD1) stability. This novel molecular regulation is validated in mouse and human cancer specimens. AMD1 is upregulated in human prostate cancer with activated mTORC1. Conversely, samples from a clinical trial with the mTORC1 inhibitor everolimus exhibit a predominant decrease in AMD1 immunoreactivity that is associated with a decrease in proliferation, in line with the requirement of dcSAM production for oncogenicity. These findings provide fundamental information about the complex regulatory landscape controlled by mTORC1 to integrate and translate growth signals into an oncogenic metabolic program.

133 citations


Journal ArticleDOI
TL;DR: Overall, the studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.
Abstract: The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.

73 citations


Journal ArticleDOI
TL;DR: Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies, and is a highly attractive target in the development of novel treatments against lethal prostate cancer.
Abstract: The endothelial transcription factor GATA2 has been reported to have a key role in driving prostate cancer aggressiveness. GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 is a highly attractive target for the development of novel treatments against lethal prostate cancer. Advanced prostate cancer is a classic example of the intractability and consequent lethality that characterizes metastatic carcinomas. Novel treatments have improved the survival of men with prostate cancer; however, advanced prostate cancer invariably becomes resistant to these therapies and ultimately progresses to a lethal metastatic stage. Consequently, detailed knowledge of the molecular mechanisms that control prostate cancer cell survival and progression towards this lethal stage of disease will benefit the development of new therapeutics. The transcription factor endothelial transcription factor GATA-2 (GATA2) has been reported to have a key role in driving prostate cancer aggressiveness. In addition to being a pioneer transcription factor that increases androgen receptor (AR) binding and activity, GATA2 regulates a core subset of clinically relevant genes in an AR-independent manner. Functionally, GATA2 overexpression in prostate cancer increases cellular motility and invasiveness, proliferation, tumorigenicity, and resistance to standard therapies. Thus, GATA2 has a multifaceted function in prostate cancer aggressiveness and is a highly attractive target in the development of novel treatments against lethal prostate cancer.

66 citations


Journal ArticleDOI
TL;DR: The IPO11 gene is introduced as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele, and explains the correlation between loss of IPO11 and PTEN protein in human lung tumors.
Abstract: Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.

34 citations


Journal ArticleDOI
TL;DR: It is reported that HLA-I is down-regulated in a subpopulation of cells that have high tumor initiating capacity in different types of human sarcomas, and differentiation therapy strategies may specifically target undifferentiated TICs and inhibit tumor formation.

10 citations


Journal ArticleDOI
TL;DR: This protocol describes the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises.
Abstract: Microtubule targeting agents (MTAs) are a mainstay in the treatment of a wide range of tumors. However, acquired resistance to chemotherapeutic drugs is a common mechanism of disease progression and a prognostic-determinant feature of malignant tumors. In prostate cancer (PC), resistance to MTAs such as the taxane Docetaxel dictates treatment failure as well as progression towards lethal stages of disease that are defined by a poor prognosis and high mortality rates. Though studied for decades, the array of mechanisms contributing to acquired resistance are not completely understood, and thus pose a significant limitation to the development of new therapeutic strategies that could benefit patients in these advanced stages of disease. In this protocol, we describe the generation of Docetaxel-resistant prostate cancer cell lines that mimic lethal features of late-stage prostate cancer, and therefore can be used to study the mechanisms by which acquired chemoresistance arises. Despite potential limitations intrinsic to a cell based model, such as the loss of resistance properties over time, the Docetaxel-resistant cell lines produced by this method have been successfully used in recent studies and offer the opportunity to advance our molecular understanding of acquired chemoresistance in lethal prostate cancer.

9 citations


Journal ArticleDOI
TL;DR: The following review article will focus on the evolution of predictive pathology from a subjective, ‘opinion-based’ approach to a quantitative science.
Abstract: Personalized or precision medicine as a diagnostic and therapeutic paradigm was introduced some 10-15 years ago, with the advent of biomarker discovery as a mechanism for identifying prognostic and predictive attributes associated with treatment indication and outcome. While the concept is not new, the successful development and implementation of novel 'companion diagnostics', especially in oncology, continues to represent a significant challenge and is currently at the forefront of smart trial design and therapeutic choice. The ability to determine patient selection for a specific therapy has broad implications including better chances for a positive outcome, limited exposure to potentially toxic drugs and improved health economics. Importantly, a significant step in this paradigm is the role of predictive pathology or the accurate assessment of morphology at the microscopic level. In breast cancer, this has been most useful where histologic attributes such as the classification of tubular and cribriform carcinoma dictates surgery while neoadjuvant studies suggest that patients with lobular carcinoma are not likely to benefit from chemotherapy. The next level of 'personalized pathology' at the tissue-cellular level is the use of 'protein biomarker panels' to classify the disease process and ultimately drive tumor characterization and treatment. The following review article will focus on the evolution of predictive pathology from a subjective, 'opinion-based' approach to a quantitative science. In addition, we will discuss the individual components of the precise pathology platform including advanced image analysis, biomarker quantitation with mathematical modeling and the integration with fluid-based (i.e. blood, urine) analytics as drivers of next generation precise patient phenotyping.

9 citations


Journal ArticleDOI
TL;DR: This corrects the article DOI: 10.1038/ncb3357 to NIBC3357, instead of NIBC3457, based on evidence that the former was closer to reality than the latter.
Abstract: Nature Cell Biology 18, 645–656 (2016); published online 23 May 2016; corrected after print 22 May 2017 In the original version of this Article, the name of author James David Sutherland was coded wrongly, resulting in it being incorrect when exported to citation databases. This has now been corrected, though no visible changes will be apparent.

6 citations