scispace - formally typeset
Search or ask a question

Showing papers by "D. M. Asner published in 2008"


Posted Content
TL;DR: In this article, a detailed study of the expected performance of the ATLAS detector is presented, together with the reconstruction of tracks, leptons, photons, missing energy and jets, along with the performance of b-tagging and the trigger.
Abstract: A detailed study is presented of the expected performance of the ATLAS detector. The reconstruction of tracks, leptons, photons, missing energy and jets is investigated, together with the performance of b-tagging and the trigger. The physics potential for a variety of interesting physics processes, within the Standard Model and beyond, is examined. The study comprises a series of notes based on simulations of the detector and physics processes, with particular emphasis given to the data expected from the first years of operation of the LHC at CERN.

1,160 citations


Journal ArticleDOI
Gerhard Buchalla1, T. K. Komatsubara2, F. Muheim3, Luca Silvestrini4, Marina Artuso5, D. M. Asner6, Patricia Ball7, E. Baracchini4, G. Bell8, M. Beneke9, Jeffrey Berryhill10, Adrian John Bevan11, Ikaros I.Y. Bigi12, Monika Blanke13, Monika Blanke14, Ch. Bobeth15, Marcella Bona16, F. Borzumati17, F. Borzumati18, T. E. Browder19, Trygve Buanes20, Oliver Buchmuller21, Andrzej J. Buras13, Sergey Burdin22, D. G. Cassel23, Richard Cavanaugh24, M. Ciuchini, Pietro Colangelo, Giovanni Crosetti25, Athanasios Dedes7, F. De Fazio, Sébastien Descotes-Genon26, J. Dickens27, Z. Doležal28, Stephan Dürr, Ulrik Egede29, C. Eggel30, G. Eigen20, S. Fajfer31, Th. Feldmann32, R. Ferrandes, Paolo Gambino33, T. J. Gershon34, V. Gibson27, Mario Giorgi35, Vladimir Gligorov36, B. Golob37, A. Golutvin38, A. Golutvin21, Yuval Grossman39, Diego Guadagnoli13, Ulrich Haisch40, Masashi Hazumi2, S. Heinemeyer, G. Hiller15, D. G. Hitlin41, Tobias Huber9, Tobias Hurth21, T. Iijima42, A. Ishikawa43, Gino Isidori, Sebastian Jäger21, Alexander Khodjamirian32, Patrick Koppenburg29, T. Lagouri28, Urs Langenegger30, Cristina Lazzeroni27, Alexander Lenz44, Vittorio Lubicz, W. Lucha, H. Mahlke23, Dmitri Melikhov45, Federico Mescia, M. Misiak46, M. Nakao2, J. Napolitano47, Nikolay Nikitin45, Ulrich Nierste8, K. Oide2, Yasuhiro Okada2, P. Paradisi13, Fabrizio Parodi48, Maulik R. Patel21, Alexey A. Petrov49, T.N. Pham50, Maurizio Pierini21, S. Playfer3, Giacomo Polesello51, Antonio Policicchio25, Anton Poschenrieder13, P. Raimondi, Stefan Recksiegel13, P. Řezníček28, A. Robert52, Jonathan L. Rosner53, G. Ruggiero21, Alessandro Sarti, O. Schneider54, F. Schwab55, Silvano Simula, Serguei Sivoklokov45, P. Slavich21, Christopher Smith56, Maria Smizanska57, Amarjit Soni58, T. Speer40, P. Spradlin36, M. Spranger13, Andrei Starodumov30, Berthold Stech59, Achille Stocchi26, Sheldon Stone5, Cecilia Tarantino, F. Teubert21, Stephane T'Jampens16, K. Toms45, K. Trabelsi2, Stephanie Trine8, Selma Uhlig13, V. Vagnoni60, J. van Hunen54, Georg Weiglein7, Andreas Weiler23, G. Wilkinson36, Yuehong Xie3, M. Yamauchi2, Guo-huai Zhu61, Jure Zupan31, Roman Zwicky7 
Ludwig Maximilian University of Munich1, Graduate University for Advanced Studies2, University of Edinburgh3, Sapienza University of Rome4, Syracuse University5, Carleton University6, Durham University7, Karlsruhe Institute of Technology8, RWTH Aachen University9, Fermilab10, Queen Mary University of London11, University of Notre Dame12, Technische Universität München13, Max Planck Society14, Technical University of Dortmund15, University of Savoy16, International Centre for Theoretical Physics17, National Central University18, University of Hawaii at Manoa19, University of Bergen20, CERN21, University of Liverpool22, Cornell University23, University of Florida24, University of Calabria25, University of Paris26, University of Cambridge27, Charles University in Prague28, Imperial College London29, ETH Zurich30, Jožef Stefan Institute31, Folkwang University of the Arts32, University of Turin33, University of Warwick34, University of Pisa35, University of Oxford36, University of Ljubljana37, Institute on Taxation and Economic Policy38, Technion – Israel Institute of Technology39, University of Zurich40, California Institute of Technology41, Nagoya University42, Saga University43, University of Regensburg44, Moscow State University45, University of Warsaw46, Rensselaer Polytechnic Institute47, University of Genoa48, Wayne State University49, École Polytechnique50, University of Pavia51, University of Clermont-Ferrand52, University of Chicago53, École Polytechnique Fédérale de Lausanne54, Autonomous University of Barcelona55, University of Bern56, Lancaster University57, Brookhaven National Laboratory58, Heidelberg University59, University of Bologna60, University of Hamburg61
TL;DR: In this article, the authors provide a coherent, up-to-date picture of the status of flavour physics before the start of the LHC and initiate activities on the path towards integrating information on NP from high-pT and flavour data.
Abstract: With the advent of the LHC, we will be able to probe New Physics (NP) up to energy scales almost one order of magnitude larger than it has been possible with present accelerator facilities. While direct detection of new particles will be the main avenue to establish the presence of NP at the LHC, indirect searches will provide precious complementary information, since most probably it will not be possible to measure the full spectrum of new particles and their couplings through direct production. In particular, precision measurements and computations in the realm of flavour physics are expected to play a key role in constraining the unknown parameters of the Lagrangian of any NP model emerging from direct searches at the LHC. The aim of Working Group 2 was twofold: on one hand, to provide a coherent, up-to-date picture of the status of flavour physics before the start of the LHC; on the other hand, to initiate activities on the path towards integrating information on NP from high-pT and flavour data.

149 citations


Posted Content
TL;DR: In this paper, the authors provide detailed discussion on important topics in tau-charm physics that will be explored during the next few years at \bes3. Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques.
Abstract: This physics book provides detailed discussions on important topics in $\tau$-charm physics that will be explored during the next few years at \bes3 . Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental techniques for Dalitz-plot analyses, analysis tools to extract absolute branching fractions and measurements of decay constants, form factors, and CP-violation and \DzDzb-oscillation parameters. Programs of QCD studies and near-threshold tau-lepton physics measurements are also discussed.

90 citations


Journal ArticleDOI
B. I. Eisenstein1, I. Karliner1, S. Mehrabyan1, N. Lowrey1, Mats A Selen1, E. J. White1, James E Wiss1, R. E. Mitchell2, M. R. Shepherd2, D. Z. Besson3, T. K. Pedlar4, Daniel P Cronin-Hennessy5, K. Y. Gao5, J. Hietala5, Yuichi Kubota5, T. Klein5, B. W. Lang5, R. Poling5, A. W. Scott5, P. Zweber5, Sean A Dobbs6, Z. Metreveli6, Kamal K. Seth6, Amiran Tomaradze6, J. Libby7, L. Martin7, A. Powell7, G. Wilkinson7, K. M. Ecklund8, W. Love9, V. Savinov9, H. Mendez10, J. Y. Ge11, D. H. Miller11, I. P.J. Shipsey11, B. Xin11, G. S. Adams12, M. Anderson12, J. P. Cummings12, I. Danko12, D. Hu12, B. Moziak12, J. Napolitano12, Q. He13, J. Insler13, H. Muramatsu13, C. S. Park13, E. H. Thorndike13, F. Yang13, Marina Artuso14, S. Blusk14, S. Khalil14, Li Jingyuan14, N. Menaa14, R. Mountain14, S. Nisar14, K. Randrianarivony14, N. Sultana14, Tomasz Skwarnicki14, Sheldon Stone14, J. C. Wang14, Lei Zhang14, G. Bonvicini15, D. Cinabro15, M. Dubrovin15, A. Lincoln15, P. Naik16, Jonas Rademacker16, D. M. Asner17, K. W. Edwards17, J. Reed17, R. A. Briere18, Thomas Ferguson18, G. Tatishvili18, Hans J. Vogel18, M. E. Watkins18, Jonathan L. Rosner19, J. P. Alexander20, D. G. Cassel20, J. E. Duboscq20, R. Ehrlich20, L. Fields20, R. S. Galik20, L. K. Gibbons20, R. Gray20, S. W. Gray20, D. L. Hartill20, B. K. Heltsley20, D. Hertz20, J. M. Hunt20, J. Kandaswamy20, D. L. Kreinick20, V. E. Kuznetsov20, J. Ledoux20, H. Mahlke-Krüger20, D. Mohapatra20, Peter Onyisi20, Juliet Ritchie Patterson20, D. Peterson20, D. Riley20, Anders Ryd20, A. J. Sadoff20, X. Shi20, S. Stroiney20, Werner Sun20, T. Wilksen20, S. B. Athar21, R. Patel21, John Yelton21, P. Rubin22 
TL;DR: In this paper, the branching ratio of the purely leptonic decay of the D{sup +} meson was measured with unprecedented precision as B(D{sup+}yields}{mu}{sup +}{nu})=(3.82{+-}0.32{+ − 0.09)x10{sup -4.
Abstract: We measure the branching ratio of the purely leptonic decay of the D{sup +} meson with unprecedented precision as B(D{sup +}{yields}{mu}{sup +}{nu})=(3.82{+-}0.32{+-}0.09)x10{sup -4}, using 818 pb{sup -1} of data taken on the {psi}(3770) resonance with the CLEO-c detector at the CESR collider. We use this determination to derive a value for the pseudoscalar decay constant f{sub D{sup +}}, combining with measurements of the D{sup +} lifetime and assuming |V{sub cd}|=|V{sub us}|. We find f{sub D{sup +}}=(205.8{+-}8.5{+-}2.5) MeV. The decay rate asymmetry ({gamma}(D{sup +}{yields}{mu}{sup +}{nu})-{gamma}(D{sup -}{yields}{mu}{sup -}{nu})/{gamma}(D{sup +}{yields}{mu}{sup +}{nu})+{gamma}(D{sup -}{yields}{mu}{sup -}{nu}))=0.08{+-}0.08, consistent with no CP violation. We also set 90% confidence level upper limits on B(D{sup +}{yields}{tau}{sup +}{nu})<1.2x10{sup -3} and B(D{sup +}{yields}e{sup +}{nu})<8.8x10{sup -6}.

89 citations


Journal ArticleDOI
W. Love1, V. Savinov1, H. Mendez2, J. Y. Ge3, D. H. Miller3, I. P.J. Shipsey3, B. Xin3, G. S. Adams4, M. Anderson4, J. P. Cummings4, I. Danko4, D. Hu4, B. Moziak4, J. Napolitano4, Q. He5, J. Insler5, H. Muramatsu5, C. S. Park5, E. H. Thorndike5, F. Yang5, Marina Artuso6, S. Blusk6, S. Khalil6, Li Jingyuan6, R. Mountain6, S. Nisar6, K. Randrianarivony6, N. Sultana6, Tomasz Skwarnicki6, Sheldon Stone6, J. C. Wang6, Lei Zhang6, G. Bonvicini7, D. Cinabro7, M. Dubrovin7, A. Lincoln7, P. Naik8, Jonas Rademacker8, D. M. Asner9, K. W. Edwards9, J. Reed9, R. A. Briere10, Thomas Ferguson10, G. Tatishvili10, Hans J. Vogel10, M. E. Watkins10, Jonathan L. Rosner11, J. P. Alexander12, D. G. Cassel12, J. E. Duboscq12, R. Ehrlich12, L. Fields12, R. S. Galik12, L. K. Gibbons12, R. Gray12, S. W. Gray12, D. L. Hartill12, B. K. Heltsley12, D. Hertz12, J. M. Hunt12, J. Kandaswamy12, D. L. Kreinick12, V. E. Kuznetsov12, J. Ledoux12, H. Mahlke-Krüger12, D. Mohapatra12, Peter Onyisi12, Juliet Ritchie Patterson12, D. Peterson12, D. Riley12, Anders Ryd12, A. J. Sadoff12, X. Shi12, S. Stroiney12, Werner Sun12, T. Wilksen12, S. B. Athar13, R. Patel13, John Yelton13, P. Rubin14, B. I. Eisenstein15, I. Karliner15, S. Mehrabyan15, N. Lowrey15, Mats A Selen15, E. J. White15, James E Wiss15, R. E. Mitchell16, M. R. Shepherd16, D. Z. Besson17, T. K. Pedlar18, Daniel P Cronin-Hennessy19, K. Y. Gao19, J. Hietala19, Yuichi Kubota19, T. Klein19, B. W. Lang19, R. Poling19, A. W. Scott19, P. Zweber19, Sean A Dobbs20, Z. Metreveli20, Kamal K. Seth20, Amiran Tomaradze20, J. Libby21, L. Martin21, A. Powell21, G. Wilkinson21, K. M. Ecklund22 
TL;DR: In this article, a non-SM-like CP-odd Higgs boson (a{sub 1}{sup 0}) decaying to {tau}{sup+tau-sup -} or {mu}{sup +}{mu-sup −} in radiative decays of the {upsilon}(1S) was found, and upper limits on the product branching ratios were set.
Abstract: We search for a non-SM-like CP-odd Higgs boson (a{sub 1}{sup 0}) decaying to {tau}{sup +}{tau}{sup -} or {mu}{sup +}{mu}{sup -} in radiative decays of the {upsilon}(1S). No significant signal is found, and upper limits on the product branching ratios are set. Our {tau}{sup +}{tau}{sup -} results are almost 2 orders of magnitude more stringent than previous upper limits. Our data provide no evidence for a Higgs state with a mass of 214 MeV decaying to {mu}{sup +}{mu}{sup -}, previously proposed as an explanation for 3 {sigma}{sup +}{yields}p{mu}{sup +}{mu}{sup -} events observed by the HyperCP experiment. Our results constrain NMSSM models.

78 citations


Journal ArticleDOI
G. Bonvicini1, D. Cinabro1, M. Dubrovin1, A. Lincoln1, P. Naik2, Jonas Rademacker2, D. M. Asner3, K. W. Edwards3, J. Reed3, R. A. Briere4, Thomas Ferguson4, G. Tatishvili4, Hans J. Vogel4, M. E. Watkins4, Jonathan L. Rosner5, J. P. Alexander6, D. G. Cassel6, J. E. Duboscq6, R. Ehrlich6, L. Fields6, L. K. Gibbons6, R. Gray6, S. W. Gray6, D. L. Hartill6, B. K. Heltsley6, D. Hertz6, J. M. Hunt6, J. Kandaswamy6, D. L. Kreinick6, V. E. Kuznetsov6, J. Ledoux6, H. Mahlke-Krüger6, D. Mohapatra6, Peter Onyisi6, Juliet Ritchie Patterson6, D. Peterson6, D. Riley6, Anders Ryd6, A. J. Sadoff6, X. Shi6, S. Stroiney6, Werner Sun6, T. Wilksen6, S. B. Athar7, R. Patel7, John Yelton7, P. Rubin8, B. I. Eisenstein9, I. Karliner9, S. Mehrabyan9, N. Lowrey9, Mats A Selen9, E. J. White9, James E Wiss9, R. E. Mitchell10, M. R. Shepherd10, D. Z. Besson11, T. K. Pedlar12, Daniel P Cronin-Hennessy13, K. Y. Gao13, J. Hietala13, Yuichi Kubota13, T. Klein13, B. W. Lang13, R. Poling13, A. W. Scott13, P. Zweber13, Sean A Dobbs14, Z. Metreveli14, Kamal K. Seth14, Amiran Tomaradze14, J. Libby15, A. Powell15, G. Wilkinson15, K. M. Ecklund16, W. Love17, V. Savinov17, Alan D. Lopez18, H. Mendez18, J. E. Ramirez18, J. Y. Ge19, D. H. Miller19, I. P.J. Shipsey19, B. Xin19, G. S. Adams20, M. Anderson20, J. P. Cummings20, I. Danko20, D. Hu20, B. Moziak20, J. Napolitano20, Q. He21, J. Insler21, H. Muramatsu21, C. S. Park21, E. H. Thorndike21, F. Yang21, Marina Artuso22, S. Blusk22, S. Khalil22, Li Jingyuan22, R. Mountain22, S. Nisar22, K. Randrianarivony22, N. Sultana22, Tomasz Skwarnicki22, Sheldon Stone22, J. C. Wang22, Lei Zhang22 
TL;DR: In this paper, the authors performed a Dalitz plot analysis of D{sup +}{yields}K{sup -{pi}S wave decay with the CLEO-c data set of 572 pb {sup -1} of e{sup+}e{sup-} collisions accumulated at the {psi}(3770).
Abstract: We perform a Dalitz plot analysis of D{sup +}{yields}K{sup -}{pi}{sup +}{pi}{sup +} decay with the CLEO-c data set of 572 pb{sup -1} of e{sup +}e{sup -} collisions accumulated at the {psi}(3770). This corresponds to 1.6x10{sup 6} D{sup +}D{sup -} pairs from which we select 140 793 candidate events with a small background of 1.1%. We compare our results with previous measurements using the isobar model. We modify the isobar model with an improved description of some of the contributing resonances and get better agreement with our data. We also consider a quasi-model-independent approach and measure the magnitude and phase of the contributing K{pi} S wave in the range of invariant masses from the threshold to the maximum in this decay. This gives an improved description of our data over the isobar model. Finally we allow for an isospin-two {pi}{sup +}{pi}{sup +} S wave contribution and find that adding this to both the isobar model and the quasi-model-independent approach gives the best description of our data.

57 citations


Journal ArticleDOI
J. P. Alexander1, Karl Berkelman1, D. G. Cassel1, J. E. Duboscq1, R. Ehrlich1, L. Fields1, L. K. Gibbons1, R. Gray1, S. W. Gray1, D. L. Hartill1, B. K. Heltsley1, D. Hertz1, C. D. Jones1, J. Kandaswamy1, D. L. Kreinick1, V. E. Kuznetsov1, H. Mahlke-Krüger1, D. Mohapatra1, Peter Onyisi1, Juliet Ritchie Patterson1, D. Peterson1, D. Riley1, Anders Ryd1, A. J. Sadoff1, X. Shi1, S. Stroiney1, Werner Sun1, T. Wilksen1, S. B. Athar2, R. Patel2, John Yelton2, P. Rubin3, B. I. Eisenstein4, I. Karliner4, S. Mehrabyan4, N. Lowrey4, Mats A Selen4, E. J. White4, James E Wiss4, R. E. Mitchell5, M. R. Shepherd5, D. Z. Besson6, T. K. Pedlar7, Daniel P Cronin-Hennessy8, K. Y. Gao8, J. Hietala8, Yuichi Kubota8, T. Klein8, B. W. Lang8, Ron Poling8, A. W. Scott8, P. Zweber8, Sean A Dobbs9, Z. Metreveli9, Kamal K. Seth9, Amiran Tomaradze9, J. Libby10, A. Powell10, G. Wilkinson10, K. M. Ecklund11, W. Love12, V. Savinov12, Alan D. Lopez13, H. Mendez13, J. E. Ramirez13, J. Y. Ge14, D. H. Miller14, B. Sanghi14, I. P.J. Shipsey14, B. Xin14, G. S. Adams15, M. Anderson15, J. P. Cummings15, I. Danko15, D. Hu15, B. Moziak15, J. Napolitano15, Q. He16, J. Insler16, H. Muramatsu16, C. S. Park16, E. H. Thorndike16, F. Yang16, Marina Artuso17, S. Blusk17, S. Khalil17, Li Jingyuan17, R. Mountain17, S. Nisar17, K. Randrianarivony17, N. Sultana17, Tomasz Skwarnicki17, Sheldon Stone17, J. C. Wang17, Lei Zhang17, G. Bonvicini18, D. Cinabro18, M. Dubrovin18, A. Lincoln18, Jonas Rademacker19, D. M. Asner20, K. W. Edwards20, P. Naik20, R. A. Briere21, Thomas Ferguson21, G. Tatishvili21, Hans J. Vogel21, M. E. Watkins21, Jonathan L. Rosner22 
TL;DR: In this paper, the branching fractions of D(s) meson decays were determined using double tag technique, where the branching fraction B(D(s)(+)-->K(-)K(+}pi(+)) = 5.50+/-0.23+/- 0.16% where the uncertainties are statistical and systematic, respectively.
Abstract: The branching fractions of D(s)(+/-) meson decays serve to normalize many measurements of processes involving charm quarks. Using 298 pb(-1) of e(+)e(-) collisions recorded at a center of mass energy of 4.17 GeV, we determine absolute branching fractions for eight D(s)(+/-) decays with a double tag technique. In particular we determine the branching fraction B(D(s)(+)-->K(-)K(+}pi(+))=(5.50+/-0.23+/-0.16)%, where the uncertainties are statistical and systematic, respectively. We also provide partial branching fractions for kinematic subsets of the K(-)K(+)pi(+) decay mode.

44 citations


Journal ArticleDOI
D. M. Asner1, K. W. Edwards1, P. Naik1, R. A. Briere2, T. Ferguson2, G. Tatishvili2, Hans J. Vogel2, M. E. Watkins2, Jonathan L. Rosner3, J. P. Alexander4, D. G. Cassel4, J. E. Duboscq4, R. Ehrlich4, L. Fields4, L. K. Gibbons4, R. Gray4, S. W. Gray4, D. L. Hartill4, B. K. Heltsley4, D. Hertz4, C. D. Jones4, J. Kandaswamy4, D. L. Kreinick4, V. E. Kuznetsov4, H. Mahlke-Krüger4, D. Mohapatra4, Peter Onyisi4, Juliet Ritchie Patterson4, D. Peterson4, D. Riley4, Anders Ryd4, A. J. Sadoff4, X. Shi4, S. Stroiney4, Werner Sun4, T. Wilksen4, S. B. Athar5, R. Patel5, John Yelton5, P. Rubin6, B. I. Eisenstein7, I. Karliner7, S. Mehrabyan7, N. Lowrey7, Mats A Selen7, E. J. White7, James E Wiss7, R. E. Mitchell8, M. R. Shepherd8, D. Z. Besson9, T. K. Pedlar10, Daniel P Cronin-Hennessy11, K. Y. Gao11, J. Hietala11, Yuichi Kubota11, T. Klein11, B. W. Lang11, Ron Poling11, A. W. Scott11, P. Zweber11, Sean A Dobbs12, Z. Metreveli12, Kamal K. Seth12, Amiran Tomaradze12, J. Libby13, A. Powell13, G. Wilkinson13, K. M. Ecklund14, W. Love15, V. Savinov15, Alan D. Lopez16, H. Mendez16, J. E. Ramirez16, J. Y. Ge17, D. H. Miller17, B. Sanghi17, I. P.J. Shipsey17, B. Xin17, G. S. Adams18, M. Anderson18, J. P. Cummings18, I. Danko18, D. Hu18, B. Moziak18, J. Napolitano18, Q. He19, J. Insler19, H. Muramatsu19, C. S. Park19, E. H. Thorndike19, F. Yang19, Marina Artuso20, S. Blusk20, S. Khalil20, Li Jingyuan20, R. Mountain20, S. Nisar20, K. Randrianarivony20, N. Sultana20, Tomasz Skwarnicki20, Sheldon Stone20, J. C. Wang20, Lei Zhang20, G. Bonvicini21, D. Cinabro21, M. Dubrovin21, A. Lincoln21, Jonas Rademacker22 
TL;DR: In this paper, the authors exploit the quantum coherence between pair-produced D{sup 0} and D{Sup 0} in {psi}(3770) decays to study charm mixing, which is characterized by the parameters x and y.
Abstract: We exploit the quantum coherence between pair-produced D{sup 0} and D{sup 0} in {psi}(3770) decays to study charm mixing, which is characterized by the parameters x and y, and to make a first determination of the relative strong phase {delta} between doubly Cabibbo-suppressed D{sup 0}{yields}K{sup +}{pi}{sup -} and Cabibbo-favored D{sup 0}{yields}K{sup +}{pi}{sup -}. We analyze a sample of 1.0x10{sup 6} D{sup 0}D{sup 0} pairs from 281 pb{sup -1} of e{sup +}e{sup -} collision data collected with the CLEO-c detector at E{sub cm}=3.77 GeV. By combining CLEO-c measurements with branching fraction input and time-integrated measurements of R{sub M}{identical_to}(x{sup 2}+y{sup 2})/2 and R{sub WS}{identical_to}{gamma}(D{sup 0}{yields}K{sup +}{pi}{sup -})/{gamma}(D{sup 0}{yields}K{sup +}{pi}{sup -}) from other experiments, we find cos{delta}=1.03{sub -0.17}{sup +0.31}{+-}0.06, where the uncertainties are statistical and systematic, respectively. In addition, by further including external measurements of charm mixing parameters, we obtain an alternate measurement of cos{delta}=1.10{+-}0.35{+-}0.07, as well as xsin{delta}=(4.4{sub -1.8}{sup +2.7}{+-}2.9)x10{sup -3} and {delta}=(22{sub -12-11}{sup +11+9}) deg.

41 citations


Journal ArticleDOI
P. Rubin1, B. I. Eisenstein2, I. Karliner2, S. Mehrabyan2, N. Lowrey2, Mats A Selen2, E. J. White2, James E Wiss2, R. E. Mitchell3, M. R. Shepherd3, D. Z. Besson4, T. K. Pedlar5, Daniel P Cronin-Hennessy6, K. Y. Gao6, J. Hietala6, Yuichi Kubota6, T. Klein6, B. W. Lang6, R. Poling6, A. W. Scott6, P. Zweber6, Sean A Dobbs7, Z. Metreveli7, Kamal K. Seth7, B. J.Y. Tan7, Amiran Tomaradze7, J. Libby8, L. Martin8, A. Powell8, G. Wilkinson8, K. M. Ecklund9, W. Love10, V. Savinov10, H. Mendez11, J. Y. Ge12, D. H. Miller12, I. P.J. Shipsey12, B. Xin12, G. S. Adams13, D. Hu13, B. Moziak13, J. Napolitano13, Q. He14, J. Insler14, H. Muramatsu14, C. S. Park14, E. H. Thorndike14, F. Yang14, Marina Artuso15, S. Blusk15, S. Khalil15, Li Jingyuan15, R. Mountain15, S. Nisar15, K. Randrianarivony15, N. Sultana15, Tomasz Skwarnicki15, Sheldon Stone15, J. C. Wang15, Lei Zhang15, G. Bonvicini16, D. Cinabro16, M. Dubrovin16, A. Lincoln16, P. Naik17, Jonas Rademacker17, D. M. Asner18, K. W. Edwards18, J. Reed18, R. A. Briere19, G. Tatishvili19, Hans J. Vogel19, Jonathan L. Rosner20, J. P. Alexander21, D. G. Cassel21, J. E. Duboscq21, R. Ehrlich21, L. Fields21, L. K. Gibbons21, R. Gray21, S. W. Gray21, D. L. Hartill21, B. K. Heltsley21, D. Hertz21, J. M. Hunt21, J. Kandaswamy21, D. L. Kreinick21, V. E. Kuznetsov21, J. Ledoux21, H. Mahlke-Krüger21, D. Mohapatra21, Peter Onyisi21, Juliet Ritchie Patterson21, D. Peterson21, D. Riley21, Anders Ryd21, A. J. Sadoff21, X. Shi21, S. Stroiney21, Werner Sun21, T. Wilksen21, S. B. Athar22, R. Patel22, John Yelton22 
TL;DR: In this paper, a search for $CP$ asymmetry in the singly Cabibbo-suppressed decay was conducted using the CLEO-c detector on the π(3770) resonance, and the authors found no evidence for violation either in specific two-body amplitudes or integrated over the entire phase space.
Abstract: We report on a search for $CP$ asymmetry in the singly Cabibbo-suppressed decay ${D}^{+}\ensuremath{\rightarrow}{K}^{+}{K}^{\ensuremath{-}}{\ensuremath{\pi}}^{+}$ using a data sample of $818\text{ }\text{ }{\mathrm{pb}}^{\ensuremath{-}1}$ accumulated with the CLEO-c detector on the $\ensuremath{\psi}(3770)$ resonance. A Dalitz-plot analysis is used to determine the amplitudes of the intermediate states. We find no evidence for $CP$ violation either in specific two-body amplitudes or integrated over the entire phase space. The $CP$ asymmetry in the latter case is measured to be $(\ensuremath{-}0.03\ifmmode\pm\else\textpm\fi{}0.84\ifmmode\pm\else\textpm\fi{}0.29)%$.

30 citations


Journal ArticleDOI
Sean A Dobbs1, Z. Metreveli1, Kamal K. Seth1, Amiran Tomaradze1, J. A. Ernst2, Horst Severini3, S. A. Dytman4, W. Love4, V. Savinov4, O. Aquines5, Z. Li5, Alan D. Lopez5, S. Mehrabyan5, H. Mendez5, J. E. Ramirez5, G. S. Huang6, D. H. Miller6, V. Pavlunin6, B. Sanghi6, I. P.J. Shipsey6, B. Xin6, G. S. Adams7, M. Anderson7, J. P. Cummings7, I. Danko7, J. Napolitano7, Q. He8, J. Insler8, H. Muramatsu8, C. S. Park8, E. H. Thorndike8, F. Yang8, T. E. Coan9, Y. S. Gao9, F. Liu9, Marina Artuso10, S. Blusk10, J. Butt10, Li Jingyuan10, N. Menaa10, R. Mountain10, S. Nisar10, K. Randrianarivony10, R. Redjimi10, R. Sia10, Tomasz Skwarnicki10, Sheldon Stone10, J. C. Wang10, K. Zhang10, S. E. Csorna11, G. Bonvicini12, D. Cinabro12, M. Dubrovin12, A. Lincoln12, D. M. Asner13, K. W. Edwards13, R. A. Briere14, I. C. Brock14, Junjie Chen14, T. Ferguson14, G. Tatishvili14, Hans J. Vogel14, M. E. Watkins14, Jonathan L. Rosner15, N. E. Adam16, J. P. Alexander16, Karl Berkelman16, D. G. Cassel16, J. E. Duboscq16, K. M. Ecklund16, R. Ehrlich16, L. Fields16, L. K. Gibbons16, R. Gray16, S. W. Gray16, D. L. Hartill16, B. K. Heltsley16, D. Hertz16, C. D. Jones16, J. Kandaswamy16, D. L. Kreinick16, V. E. Kuznetsov16, H. Mahlke-Krüger16, Peter Onyisi16, Juliet Ritchie Patterson16, D. Peterson16, J. Pivarski16, D. Riley16, Anders Ryd16, A. J. Sadoff16, H. Schwarthoff16, X. Shi16, S. Stroiney16, Werner Sun16, T. Wilksen16, M. Weinberger16, S. B. Athar17, R. Patel17, V. Potlia17, John Yelton17, P. Rubin18, C. Cawlfield19, B. I. Eisenstein19, I. Karliner19, Dong-Hyun Kim19, N. Lowrey19, P. Naik19, C. Sedlack19, Mats A Selen19, E. J. White19, James E Wiss19, M. R. Shepherd20, D. Z. Besson21, T. K. Pedlar22, D. Cronin-Hennessy23, K. Y. Gao23, D. T. Gong23, J. Hietala23, Yuichi Kubota23, T. Klein23, B. W. Lang23, Ron Poling23, A. W. Scott23, A. Smith23, P. Zweber23 
TL;DR: Using a sample of 1.8 million mesons collected at the $\ensuremath{\psi}(3770)$ with the CLEO-c detector, semileptonic decays are studied through fits to the partial branching fractions obtained in five ${q}^{2}$ ranges.
Abstract: Using a sample of 1.8 million $D\overline{D}$ mesons collected at the $\ensuremath{\psi}(3770)$ with the CLEO-c detector, we study the semileptonic decays ${D}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{e}^{+}{\ensuremath{ u}}_{e}$, ${D}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{e}^{+}{\ensuremath{ u}}_{e}$, ${D}^{0}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{e}^{+}{\ensuremath{ u}}_{e}$, and ${D}^{+}\ensuremath{\rightarrow}{\overline{K}}^{0}{e}^{+}{\ensuremath{ u}}_{e}$. For the total branching fractions we find $\mathcal{B}({D}^{0}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{\ensuremath{-}}{e}^{+}{\ensuremath{ u}}_{e})=0.299(11)(9)%$, $\mathcal{B}({D}^{+}\ensuremath{\rightarrow}{\ensuremath{\pi}}^{0}{e}^{+}{\ensuremath{ u}}_{e})=0.373(22)(13)%$, $\mathcal{B}({D}^{0}\ensuremath{\rightarrow}{K}^{\ensuremath{-}}{e}^{+}{\ensuremath{ u}}_{e})=3.56(3)(9)%$, and $\mathcal{B}({D}^{+}\ensuremath{\rightarrow}{\overline{K}}^{0}{e}^{+}{\ensuremath{ u}}_{e})=8.53(13)(23)%$, where the first error is statistical and the second systematic. In addition, form factors are studied through fits to the partial branching fractions obtained in five ${q}^{2}$ ranges. By combining our results with recent unquenched lattice calculations, we obtain $|{V}_{cd}|=0.217(9)(4)(23)$ and $|{V}_{cs}|=1.015(10)(11)(106)$, where the final error is theoretical.

26 citations


Journal ArticleDOI
W. Love1, V. Savinov1, Alan D. Lopez2, S. Mehrabyan2, H. Mendez2, J. E. Ramirez2, G. S. Huang3, D. H. Miller3, V. Pavlunin3, B. Sanghi3, Ian Shipsey3, B. Xin3, G. S. Adams4, M. Anderson4, J. P. Cummings4, I. Danko4, D. Hu4, B. Moziak4, J. Napolitano4, Q. He5, J. Insler5, H. Muramatsu5, C. S. Park5, E. H. Thorndike5, F. Yang5, Marina Artuso6, S. Blusk6, N. Horwitz6, S. Khalil6, Li Jingyuan6, N. Menaa6, R. Mountain6, S. Nisar6, K. Randrianarivony6, R. Sia6, Tomasz Skwarnicki6, Sheldon Stone6, J. C. Wang6, G. Bonvicini7, D. Cinabro7, M. Dubrovin7, A. Lincoln7, D. M. Asner8, K. W. Edwards8, P. Naik8, R. A. Briere9, T. Ferguson9, G. Tatishvili9, Helmut Vogel9, M. E. Watkins9, Jonathan L. Rosner10, N. E. Adam11, J. P. Alexander11, Karl Berkelman11, D. G. Cassel11, J. E. Duboscq11, R. Ehrlich11, L. Fields11, R. S. Galik11, L. K. Gibbons11, R. Gray11, S. W. Gray11, D. L. Hartill11, B. K. Heltsley11, D. Hertz11, C. D. Jones11, J. Kandaswamy11, D. L. Kreinick11, V. E. Kuznetsov11, H. Mahlke-Krüger11, D. Mohapatra11, Peter Onyisi11, Juliet Ritchie Patterson11, D. Peterson11, J. Pivarski11, D. Riley11, Anders Ryd11, A. J. Sadoff11, H. Schwarthoff11, X. Shi11, S. Stroiney11, Werner Sun11, T. Wilksen11, S. B. Athar12, R. Patel12, John Yelton12, P. Rubin13, C. Cawlfield14, B. I. Eisenstein14, I. Karliner14, Dong-Hyun Kim14, N. Lowrey14, Mats A Selen14, E. J. White14, James E Wiss14, R. E. Mitchell15, M. R. Shepherd15, D. Z. Besson16, T. K. Pedlar17, Daniel P Cronin-Hennessy18, K. Y. Gao18, J. Hietala18, Yuichi Kubota18, T. Klein18, B. W. Lang18, Ron Poling18, A. W. Scott18, A. Smith18, P. Zweber18, Sean A Dobbs19, Z. Metreveli19, Kamal K. Seth19, Amiran Tomaradze19, K. M. Ecklund20 
TL;DR: In this article, a search for lepton flavor violation (LFV) in the bottomonium system was described and a multidimensional likelihood fitting with probability density function shapes measured from independent data samples was performed.
Abstract: In this Letter, we describe a search for lepton flavor violation (LFV) in the bottomonium system. We search for leptonic decays Upsilon(nS)-->mutau (n=1, 2, and 3) using the data collected with the CLEO III detector. We identify the tau lepton using its leptonic decay nu_{tau}nu[over ]_{e}e and utilize multidimensional likelihood fitting with probability density function shapes measured from independent data samples. We report our estimates of 95% C.L. upper limits on LFV branching fractions of Upsilon mesons. We interpret our results in terms of the exclusion plot for the energy scale of a hypothetical new interaction versus its effective LFV coupling in the framework of effective field theory.

Journal ArticleDOI
Q. He1, J. Insler1, H. Muramatsu1, C. S. Park1, E. H. Thorndike1, F. Yang1, T. E. Coan2, Y. S. Gao2, Marina Artuso3, S. Blusk3, J. Butt3, Li Jingyuan3, N. Menaa3, R. Mountain3, S. Nisar3, K. Randrianarivony3, R. Sia3, Tomasz Skwarnicki3, Sheldon Stone3, J. C. Wang3, K. Zhang3, G. Bonvicini4, D. Cinabro4, M. Dubrovin4, A. Lincoln4, D. M. Asner5, K. W. Edwards5, R. A. Briere6, Thomas Ferguson6, G. Tatishvili6, Hans J. Vogel6, M. E. Watkins6, Jonathan L. Rosner7, N. E. Adam8, J. P. Alexander8, D. G. Cassel8, J. E. Duboscq8, R. Ehrlich8, L. Fields8, L. K. Gibbons8, R. Gray8, S. W. Gray8, D. L. Hartill8, B. K. Heltsley8, D. Hertz8, C. D. Jones8, J. Kandaswamy8, D. L. Kreinick8, V. E. Kuznetsov8, H. Mahlke-Krüger8, Peter Onyisi8, Juliet Ritchie Patterson8, D. Peterson8, J. Pivarski8, D. Riley8, Anders Ryd8, A. J. Sadoff8, H. Schwarthoff8, X. Shi8, S. Stroiney8, Werner Sun8, T. Wilksen8, M. Weinberger8, S. B. Athar9, R. Patel9, V. Potlia9, John Yelton9, P. Rubin10, C. Cawlfield11, B. I. Eisenstein11, I. Karliner11, Dong-Hyun Kim11, N. Lowrey11, P. Naik11, Mats A Selen11, E. J. White11, James E Wiss11, R. E. Mitchell12, M. R. Shepherd12, D. Z. Besson13, T. K. Pedlar14, Daniel P Cronin-Hennessy15, K. Y. Gao15, J. Hietala15, Yuichi Kubota15, T. Klein15, B. W. Lang15, R. Poling15, A. W. Scott15, A. Smith15, P. Zweber15, Sean A Dobbs16, Z. Metreveli16, Kamal K. Seth16, Amiran Tomaradze16, J. A. Ernst17, K. M. Ecklund18, Horst Severini19, W. Love20, V. Savinov20, O. Aquines21, Z. Li21, Alan D. Lopez21, S. Mehrabyan21, H. Mendez21, J. E. Ramirez21, G. S. Huang22, D. H. Miller22, V. Pavlunin22, B. Sanghi22, I. P.J. Shipsey22, B. Xin22, G. S. Adams23, M. Anderson23, J. P. Cummings23, I. Danko23, D. Hu23, B. Moziak23, J. Napolitano23 
TL;DR: In this article, the authors present measurements of D{yields}K{sub S}{sup 0,pi} and D{ yields} K{sub L {sub S,pi,psi} branching fractions using 281 pb{sup -1} of {psi(3770) data at the CLEO-c experiment, with an asymmetry of R(D{sup 0})=0.108{+-}0.024.
Abstract: We present measurements of D{yields}K{sub S}{sup 0}{pi} and D{yields}K{sub L}{sup 0}{pi} branching fractions using 281 pb{sup -1} of {psi}(3770) data at the CLEO-c experiment. We find that B(D{sup 0}{yields}K{sub S}{sup 0}{pi}{sup 0}) is larger than B(D{sup 0}{yields}K{sub L}{sup 0}{pi}{sup 0}), with an asymmetry of R(D{sup 0})=0.108{+-}0.025{+-}0.024. For B(D{sup +}{yields}K{sub S}{sup 0}{pi}{sup +}) and B(D{sup +}{yields}K{sub L}{sup 0}{pi}{sup +}), we observe no measurable difference; the asymmetry is R(D{sup +})=0.022{+-}0.016{+-}0.018. The D{sup 0} asymmetry is consistent with the value based on the U-spin prediction A(D{sup 0}{yields}K{sup 0}{pi}{sup 0})/A(D{sup 0}{yields}K{sup 0}{pi}{sup 0})=-tan{sup 2}{theta}{sub C}, where {theta}{sub C} is the Cabibbo angle.

Journal ArticleDOI
H. Mendez1, J. Y. Ge2, D. H. Miller2, I. P.J. Shipsey2, B. Xin2, G. S. Adams3, M. Anderson3, J. P. Cummings3, I. Danko3, D. Hu3, B. Moziak3, J. Napolitano3, Q. He4, J. Insler4, H. Muramatsu4, C. S. Park4, E. H. Thorndike4, F. Yang4, Marina Artuso5, S. Blusk5, S. Khalil5, Li Jingyuan5, R. Mountain5, S. Nisar5, K. Randrianarivony5, N. Sultana5, Tomasz Skwarnicki5, Sheldon Stone5, J. C. Wang5, Lei Zhang5, G. Bonvicini6, D. Cinabro6, M. Dubrovin6, A. Lincoln6, P. Naik7, Jonas Rademacker7, D. M. Asner8, K. W. Edwards8, J. Reed8, R. A. Briere9, T. Ferguson9, G. Tatishvili9, Hans J. Vogel9, M. E. Watkins9, Jonathan L. Rosner10, J. P. Alexander11, D. G. Cassel11, J. E. Duboscq11, R. Ehrlich11, L. Fields11, L. K. Gibbons11, R. Gray11, S. W. Gray11, D. L. Hartill11, Brian Heltsley11, D. Hertz11, J. M. Hunt11, J. Kandaswamy11, D. L. Kreinick11, V. E. Kuznetsov11, J. Ledoux11, H. Mahlke-Krüger11, D. Mohapatra11, Peter Onyisi11, Juliet Ritchie Patterson11, D. Peterson11, D. Riley11, Anders Ryd11, A. J. Sadoff11, X. Shi11, S. Stroiney11, Werner Sun11, T. Wilksen11, S. B. Athar12, R. Patel12, John Yelton12, P. Rubin13, B. I. Eisenstein14, I. Karliner14, S. Mehrabyan14, N. Lowrey14, Mats A Selen14, E. J. White14, James E Wiss14, R. E. Mitchell15, M. R. Shepherd15, D. Z. Besson16, T. K. Pedlar17, Daniel P Cronin-Hennessy18, K. Y. Gao18, J. Hietala18, Yuichi Kubota18, T. Klein18, B. W. Lang18, Ron Poling18, A. W. Scott18, P. Zweber18, Sean A Dobbs19, Z. Metreveli19, Kamal K. Seth19, Amiran Tomaradze19, J. Libby20, A. Powell20, G. Wilkinson20, K. M. Ecklund21, W. Love22, V. Savinov22 
TL;DR: In this paper, branching fractions for the decays {psi}(2S){yields}h+J/{psi], where h=any, {pi}{sup +}e{sup-} collision data collected with the CLEO detector.
Abstract: We report determination of branching fractions for the decays {psi}(2S){yields}h+J/{psi}, where h=any, {pi}{sup +}{pi}{sup -}, {pi}{sup 0}{pi}{sup 0}, {eta}, {pi}{sup 0}, and {gamma}{gamma} through {chi}{sub c0,1,2}. These measurements use 27M {psi}(2S) decays produced in e{sup +}e{sup -} collision data collected with the CLEO detector. The resulting branching fractions and ratios thereof improve upon previously achieved precision in all cases, and in combination with other measurements permit determination of B({chi}{sub cJ}{yields}{gamma}J/{psi}) and B({psi}(2S){yields}light hadrons)

Journal ArticleDOI
S. B. Athar1, R. Patel1, John Yelton1, P. Rubin2, B. I. Eisenstein3, I. Karliner3, S. Mehrabyan3, N. Lowrey3, Mats A Selen3, E. J. White3, James E Wiss3, R. E. Mitchell4, M. R. Shepherd4, D. Z. Besson5, T. K. Pedlar6, Daniel P Cronin-Hennessy7, K. Y. Gao7, J. Hietala7, Yuichi Kubota7, T. Klein7, B. W. Lang7, R. Poling7, A. W. Scott7, P. Zweber7, Sean A Dobbs8, Z. Metreveli8, Kamal K. Seth8, Amiran Tomaradze8, J. Libby9, A. Powell9, G. Wilkinson9, K. M. Ecklund10, W. Love11, V. Savinov11, Alan D. Lopez12, H. Mendez12, J. E. Ramirez12, J. Y. Ge13, D. H. Miller13, I. P.J. Shipsey13, B. Xin13, G. S. Adams14, M. Anderson14, J. P. Cummings14, I. Danko14, D. Hu14, B. Moziak14, J. Napolitano14, Q. He15, J. Insler15, H. Muramatsu15, C. S. Park15, E. H. Thorndike15, F. Yang15, Marina Artuso16, S. Blusk16, S. Khalil16, Li Jingyuan16, R. Mountain16, S. Nisar16, K. Randrianarivony16, N. Sultana16, Tomasz Skwarnicki16, Sheldon Stone16, J. C. Wang16, Lei Zhang16, G. Bonvicini17, D. Cinabro17, M. Dubrovin17, A. Lincoln17, P. Naik18, Jonas Rademacker18, D. M. Asner19, K. W. Edwards19, J. Reed19, R. A. Briere20, Thomas Ferguson20, G. Tatishvili20, Hans J. Vogel20, M. E. Watkins20, Jonathan L. Rosner21, J. P. Alexander22, D. G. Cassel22, J. E. Duboscq22, R. Ehrlich22, L. Fields22, L. K. Gibbons22, R. Gray22, S. W. Gray22, D. L. Hartill22, B. K. Heltsley22, D. Hertz22, J. M. Hunt22, J. Kandaswamy22, D. L. Kreinick22, V. E. Kuznetsov22, J. Ledoux22, H. Mahlke-Krüger22, D. Mohapatra22, Peter Onyisi22, Juliet Ritchie Patterson22, D. Peterson22, D. Riley22, Anders Ryd22, A. J. Sadoff22, X. Shi22, S. Stroiney22, Werner Sun22, T. Wilksen22 
TL;DR: This is the first observation of a charmed meson decaying into a baryon-antibaryon final state in the decay Ds+-->pn.
Abstract: Using e{sup +}e{sup -}{yields}D{sub s}*{sup -}D{sub s}{sup +} data collected near the peak D{sub s} production energy, E{sub cm}=4170 MeV, with the CLEO-c detector, we present the first observation of the decay D{sub s}{sup +}{yields}pn. We measure a branching fraction B(D{sub s}{sup +}{yields}pn)=(1.30{+-}0.36{sub -0.16}{sup +0.12})x10{sup -3}. This is the first observation of a charmed meson decaying into a baryon-antibaryon final state.

07 Jan 2008
TL;DR: The SuperB Workshop as discussed by the authors evaluated the capability of a high-luminosity flavor factory that can gather a data sample of 50 to 75 /ab in five years to elucidate New Physics phenomena unearthed at the LHC.
Abstract: The sixth SuperB Workshop was convened in response to questions posed by the INFN Review Committee, evaluating the SuperB project at the request of INFN. The working groups addressed the capability of a high-luminosity flavor factory that can gather a data sample of 50 to 75 /ab in five years to elucidate New Physics phenomena unearthed at the LHC. This report summarizes the results of the Workshop.

Journal ArticleDOI
Daniel P Cronin-Hennessy1, K. Y. Gao1, D. T. Gong1, J. Hietala1, Yuichi Kubota1, T. Klein1, B. W. Lang1, Ron Poling1, A. W. Scott1, A. Smith1, P. Zweber1, Sean A Dobbs2, Z. Metreveli2, Kamal K. Seth2, Amiran Tomaradze2, J. A. Ernst3, Horst Severini4, S. A. Dytman5, W. Love5, V. Savinov5, O. Aquines6, Z. Li6, Alan D. Lopez6, S. Mehrabyan6, H. Mendez6, J. E. Ramirez6, G. S. Huang7, D. H. Miller7, V. Pavlunin7, B. Sanghi7, I. P.J. Shipsey7, B. Xin7, G. S. Adams8, M. Anderson8, J. P. Cummings8, I. Danko8, J. Napolitano8, Q. He9, J. Insler9, H. Muramatsu9, C. S. Park9, E. H. Thorndike9, F. Yang9, T. E. Coan10, Y. S. Gao10, F. Liu10, Marina Artuso11, S. Blusk11, J. Butt11, Li Jingyuan11, N. Menaa11, R. Mountain11, S. Nisar11, K. Randrianarivony11, R. Redjimi11, R. Sia11, Tomasz Skwarnicki11, Sheldon Stone11, J. C. Wang11, K. Zhang11, S. E. Csorna12, G. Bonvicini13, D. Cinabro13, M. Dubrovin13, A. Lincoln13, D. M. Asner14, K. W. Edwards14, R. A. Briere15, I. C. Brock15, Junjie Chen15, T. Ferguson15, G. Tatishvili15, Hans J. Vogel15, M. E. Watkins15, Jonathan L. Rosner16, N. E. Adam17, J. P. Alexander17, Karl Berkelman17, D. G. Cassel17, J. E. Duboscq17, K. M. Ecklund17, R. Ehrlich17, L. Fields17, L. K. Gibbons17, R. Gray17, S. W. Gray17, D. L. Hartill17, B. K. Heltsley17, D. Hertz17, C. D. Jones17, J. Kandaswamy17, D. L. Kreinick17, V. E. Kuznetsov17, H. Mahlke-Krüger17, Peter Onyisi17, Juliet Ritchie Patterson17, D. Peterson17, J. Pivarski17, D. Riley17, Anders Ryd17, A. J. Sadoff17, H. Schwarthoff17, X. Shi17, S. Stroiney17, Werner Sun17, T. Wilksen17, M. Weinberger17, S. B. Athar18, R. Patel18, V. Potlia18, John Yelton18, P. Rubin19, C. Cawlfield20, B. I. Eisenstein20, I. Karliner20, Dong-Hyun Kim20, N. Lowrey20, P. Naik20, C. Sedlack20, Mats A Selen20, E. J. White20, James E Wiss20, M. R. Shepherd21, D. Z. Besson22, T. K. Pedlar23 
TL;DR: By using 1.8x10{sup 6} DD pairs, Wang et al. as discussed by the authors measured B(D{sup 0}yields}{pi}{sup -}e{sup +}{nu}{sub e})=0.299(11)(9)%, B(d{sup plus}{yield's}{pi {sup 0}, e{sup+}nu {sub e}
Abstract: By using 1.8x10{sup 6} DD pairs, we have measured B(D{sup 0}{yields}{pi}{sup -}e{sup +}{nu}{sub e})=0.299(11)(9)%, B(D{sup +}{yields}{pi}{sup 0}e{sup +}{nu}{sub e})=0.373(22)(13)%, B(D{sup 0}{yields}K{sup -}e{sup +}{nu}{sub e})=3.56(3)(9)%, and B(D{sup +}{yields}K{sup 0}e{sup +}{nu}{sub e})=8.53(13)(23)% and have studied the q{sup 2} dependence of the form factors. By combining our results with recent lattice calculations, we obtain |V{sub cd}|=0.217(9)(4)(23) and |V{sub cs}|=1.015(10)(11)(106)

Journal ArticleDOI
R. A. Briere1, T. Ferguson1, G. Tatishvili1, Hans J. Vogel1, M. E. Watkins1, Jonathan L. Rosner2, J. P. Alexander3, D. G. Cassel3, J. E. Duboscq3, R. Ehrlich3, L. Fields3, R. S. Galik3, L. K. Gibbons3, R. Gray3, S. W. Gray3, D. L. Hartill3, B. K. Heltsley3, D. Hertz3, J. Kandaswamy3, D. L. Kreinick3, V. E. Kuznetsov3, H. Mahlke-Krüger3, D. Mohapatra3, Peter Onyisi3, Juliet Ritchie Patterson3, D. Peterson3, D. Riley3, Anders Ryd3, A. J. Sadoff3, X. Shi3, S. Stroiney3, Werner Sun3, T. Wilksen3, S. B. Athar4, R. Patel4, John Yelton4, P. Rubin5, B. I. Eisenstein6, I. Karliner6, S. Mehrabyan6, N. Lowrey6, Mats A Selen6, E. J. White6, James E Wiss6, R. E. Mitchell7, M. R. Shepherd7, D. Z. Besson8, T. K. Pedlar9, Daniel P Cronin-Hennessy10, K. Y. Gao10, J. Hietala10, Yuichi Kubota10, T. Klein10, B. W. Lang10, Ron Poling10, A. W. Scott10, P. Zweber10, Sean A Dobbs11, Z. Metreveli11, Kamal K. Seth11, Amiran Tomaradze11, J. Libby12, A. Powell12, G. Wilkinson12, K. M. Ecklund13, W. Love14, V. Savinov14, Alan D. Lopez15, H. Mendez15, J. E. Ramirez15, J. Y. Ge16, D. H. Miller16, I. P.J. Shipsey16, B. Xin16, G. S. Adams17, M. Anderson17, J. P. Cummings17, I. Danko17, D. Hu17, B. Moziak17, J. Napolitano17, Q. He18, J. Insler18, H. Muramatsu18, C. S. Park18, E. H. Thorndike18, F. Yang18, Marina Artuso19, S. Blusk19, S. Khalil19, Li Jingyuan19, R. Mountain19, S. Nisar19, K. Randrianarivony19, N. Sultana19, Tomasz Skwarnicki19, Sheldon Stone19, J. C. Wang19, Lei Zhang19, G. Bonvicini20, D. Cinabro20, M. Dubrovin20, A. Lincoln20, P. Naik21, Jonas Rademacker21, D. M. Asner22, K. W. Edwards22, J. Reed22 
TL;DR: In this paper, the decays of {chi-sub bJ} to final states with open charm were investigated using the CLEO III detector, and the results confirmed the NRQCD predictions.
Abstract: Using {upsilon}(2S) and {upsilon}(3S) data collected with the CLEO III detector we have searched for decays of {chi}{sub bJ} to final states with open charm. We fully reconstruct D{sup 0} mesons with p{sub D{sup 0}}>2.5 GeV/c in three decay modes (K{sup -}{pi}{sup +}, K{sup -}{pi}{sup +}{pi}{sup 0}, and K{sup -}{pi}{sup -}{pi}{sup +}{pi}{sup +}) in coincidence with radiative transition photons that tag the production of one of the {chi}{sub bJ}(nP) states. Significant signals are obtained for the two J=1 states. Recent nonrelativistic QCD (NRQCD) calculations of {chi}{sub bJ}(nP){yields}ccX depend on one nonperturbative parameter per {chi}{sub bJ} triplet. The extrapolation from the observed D{sup 0}X rate over a limited momentum range to a full ccX rate also depends on these same parameters. Using our data to fit for these parameters, we extract results which agree well with NRQCD predictions, confirming the expectation that charm production is largest for the J=1 states. In particular, for J=1, our results are consistent with ccg accounting for about one-quarter of all hadronic decays.

Journal ArticleDOI
Q. He1, J. Insler1, H. Muramatsu1, C. S. Park1, E. H. Thorndike1, F. Yang1, Marina Artuso2, S. Blusk2, S. Khalil2, Li Jingyuan2, N. Menaa2, R. Mountain2, S. Nisar2, K. Randrianarivony2, R. Sia2, N. Sultana2, Tomasz Skwarnicki2, Sheldon Stone2, J. C. Wang2, Lei Zhang2, G. Bonvicini3, D. Cinabro3, M. Dubrovin3, A. Lincoln3, D. M. Asner4, K. W. Edwards4, P. Naik4, R. A. Briere5, T. Ferguson5, G. Tatishvili5, Hans J. Vogel5, M. E. Watkins5, Jonathan L. Rosner6, N. E. Adam7, J. P. Alexander7, D. G. Cassel7, J. E. Duboscq7, R. Ehrlich7, L. Fields7, L. K. Gibbons7, R. Gray7, S. W. Gray7, D. L. Hartill7, B. K. Heltsley7, D. Hertz7, C. D. Jones7, J. Kandaswamy7, D. L. Kreinick7, V. E. Kuznetsov7, H. Mahlke-Krüger7, D. Mohapatra7, Peter Onyisi7, Juliet Ritchie Patterson7, D. Peterson7, D. Riley7, Anders Ryd7, A. J. Sadoff7, X. Shi7, S. Stroiney7, Werner Sun7, T. Wilksen7, S. B. Athar8, R. Patel8, John Yelton8, P. Rubin9, B. I. Eisenstein10, I. Karliner10, S. Mehrabyan10, N. Lowrey10, Mats A Selen10, E. J. White10, James E Wiss10, R. E. Mitchell11, M. R. Shepherd11, D. Z. Besson12, T. K. Pedlar13, Daniel P Cronin-Hennessy14, K. Y. Gao14, J. Hietala14, Yuichi Kubota14, T. Klein14, B. W. Lang14, Ron Poling14, A. W. Scott14, P. Zweber14, Sean A Dobbs15, Z. Metreveli15, Kamal K. Seth15, Amiran Tomaradze15, K. M. Ecklund16, W. Love17, V. Savinov17, Alan D. Lopez18, H. Mendez18, J. E. Ramirez18, J. Y. Ge19, D. H. Miller19, B. Sanghi19, I. P.J. Shipsey19, B. Xin19, G. S. Adams20, M. Anderson20, J. P. Cummings20, I. Danko20, D. Hu20, B. Moziak20, J. Napolitano20 
TL;DR: In this paper, the authors studied exclusive {chi}{sub c 0,1,2} decays to four-hadron final states involving two charged and two neutral hadrons.
Abstract: We study exclusive {chi}{sub c0,1,2} decays to four-hadron final states involving two charged and two neutral hadrons: {pi}{sup +}{pi}{sup -}{pi}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}{pi}{sup 0}{pi}{sup 0}, pp{pi}{sup 0}{pi}{sup 0}, K{sup +}K{sup -}{eta}{pi}{sup 0}, and K{sup {+-}}{pi}{sup {+-}}K{sup 0}{pi}{sup 0}. The {chi}{sub c} states are produced in radiative decays of 3.08x10{sup 6} {psi}(2S) resonance decays and observed in the CLEO detector. We also measure the largest substructure contributions to the modes {pi}{sup +}{pi}{sup -}{pi}{sup 0}{pi}{sup 0} and K{sup {+-}}{pi}{sup {+-}}K{sup 0}{pi}{sup 0}.