scispace - formally typeset
Search or ask a question

Showing papers by "Edward J. Dick published in 2020"


Journal ArticleDOI
09 Oct 2020-Science
TL;DR: It is demonstrated that REGN-COV-2 can greatly reduce virus load in the lower and upper airways and decrease virus-induced pathological sequelae when administered prophylactically or therapeutically in rhesus macaques and golden hamsters.
Abstract: An urgent global quest for effective therapies to prevent and treat coronavirus disease 2019 (COVID-19) is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987 and REGN10933) that targets nonoverlapping epitopes on the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques, which may model mild disease, and golden hamsters, which may model more severe disease. We demonstrate that REGN-COV-2 can greatly reduce virus load in the lower and upper airways and decrease virus-induced pathological sequelae when administered prophylactically or therapeutically in rhesus macaques. Similarly, administration in hamsters limits weight loss and decreases lung titers and evidence of pneumonia in the lungs. Our results provide evidence of the therapeutic potential of this antibody cocktail.

460 citations


Journal ArticleDOI
TL;DR: Transgenic mice expressing human angiotensin-converting enzyme 2 by the human cytokeratin 18 promoter represent a susceptible rodent model and represent a suitable animal model for the study of viral pathogenesis and for identification and characterization of vaccines and antivirals for SARS-CoV-2 infection and associated severe COVID-19 disease.
Abstract: Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease would benefit from validated small animal models. Here, we show that transgenic mice expressing human angiotensin-converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2 transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2 transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 6. K18 hACE2 transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease. Here, the authors characterize tissue-level SARS-CoV-2 infection and pathogenesis in transgenic mice expressing human angiotensin converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18-hACE2) and show that infection induces lethality, making the K18-hACE2 model suitable for vaccine and therapeutic evaluation.

247 citations


Posted ContentDOI
19 Jul 2020-bioRxiv
TL;DR: K18 hACE2-transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS/COVID-19 disease.
Abstract: Vaccine and antiviral development against SARS-CoV-2 infection or COVID-19 disease currently lacks a validated small animal model. Here, we show that transgenic mice expressing human angiotensin converting enzyme 2 (hACE2) by the human cytokeratin 18 promoter (K18 hACE2) represent a susceptible rodent model. K18 hACE2-transgenic mice succumbed to SARS-CoV-2 infection by day 6, with virus detected in lung airway epithelium and brain. K18 ACE2-transgenic mice produced a modest TH1/2/17 cytokine storm in the lung and spleen that peaked by day 2, and an extended chemokine storm that was detected in both lungs and brain. This chemokine storm was also detected in the brain at day 4. K18 hACE2-transgenic mice are, therefore, highly susceptible to SARS-CoV-2 infection and represent a suitable animal model for the study of viral pathogenesis, and for identification and characterization of vaccines (prophylactic) and antivirals (therapeutics) for SARS-CoV-2 infection and associated severe COVID-19 disease.

147 citations


Posted ContentDOI
05 Jun 2020-bioRxiv
TL;DR: These results showcase in critical detail, the robust early cellular immune responses to SARS-CoV-2 infection, which are not sterilizing and likely impact development of antibody responses.
Abstract: Summary There are no known cures or vaccines for COVID-19, the defining pandemic of this era. Animal models are essential to fast track new interventions and nonhuman primate (NHP) models of other infectious diseases have proven extremely valuable. Here we compare SARS-CoV-2 infection in three species of experimentally infected NHPs (rhesus macaques, baboons, and marmosets). During the first 3 days, macaques developed clinical signatures of viral infection and systemic inflammation, coupled with early evidence of viral replication and mild-to-moderate interstitial and alveolar pneumonitis, as well as extra-pulmonary pathologies. Cone-beam CT scans showed evidence of moderate pneumonia, which progressed over 3 days. Longitudinal studies showed that while both young and old macaques developed early signs of COVID-19, both groups recovered within a two-week period. Recovery was characterized by low-levels of viral persistence in the lung, suggesting mechanisms by which individuals with compromised immune systems may be susceptible to prolonged and progressive COVID-19. The lung compartment contained a complex early inflammatory milieu with an influx of innate and adaptive immune cells, particularly interstitial macrophages, neutrophils and plasmacytoid dendritic cells, and a prominent Type I-interferon response. While macaques developed moderate disease, baboons exhibited prolonged shedding of virus and extensive pathology following infection; and marmosets demonstrated a milder form of infection. These results showcase in critical detail, the robust early cellular immune responses to SARS-CoV-2 infection, which are not sterilizing and likely impact development of antibody responses. Thus, various NHP genera recapitulate heterogeneous progression of COVID-19. Rhesus macaques and baboons develop different, quantifiable disease attributes making them immediately available essential models to test new vaccines and therapies.

32 citations


Posted ContentDOI
03 Aug 2020-bioRxiv
TL;DR: It is demonstrated that REGN-COV2 can greatly reduce virus load in lower and upper airway and decrease virus induced pathological sequalae when administered prophylactically or therapeutically and this results provide evidence of the therapeutic potential of this antibody cocktail.
Abstract: An urgent global quest for effective therapies to prevent and treat COVID-19 disease is ongoing. We previously described REGN-COV2, a cocktail of two potent neutralizing antibodies (REGN10987+REGN10933) targeting non-overlapping epitopes on the SARS-CoV-2 spike protein. In this report, we evaluate the in vivo efficacy of this antibody cocktail in both rhesus macaques and golden hamsters and demonstrate that REGN-COV-2 can greatly reduce virus load in lower and upper airway and decrease virus induced pathological sequalae when administered prophylactically or therapeutically. Our results provide evidence of the therapeutic potential of this antibody cocktail.

28 citations


Journal ArticleDOI
TL;DR: The baboon may represent an underutilized model for studying Streptococcus spp.
Abstract: Streptococcus spp. are a source of morbidity and mortality in captive nonhuman primate populations. However, little is known about the lesions associated with naturally occurring streptococcal infections in baboons (Papio spp.). The pathology database of the Southwest National Primate Research Center was searched for all baboon autopsies from 1988 to 2018 in which Streptococcus spp. were cultured. Baboons on experimental protocol were excluded. The gross autopsy and histopathology reports were reviewed. Archived specimens were retrieved and reviewed as needed for confirmation or clarification. Fifty-six cultures were positive for Streptococcus spp. in 54 baboons with evidence of bacterial infection. Associated gross lesions included purulent exudate, fibrinous to fibrous adhesions, hemorrhage, mucosal thickening, organomegaly, and abscessation. Histologic lesions included suppurative inflammation, abscessation, necrosis, hemorrhage, fibrin accumulation, and thrombosis. Lungs and pleura (n = 31) were the most commonly infected organ followed by the central nervous system (n = 16), spleen (n = 15), soft tissues (n = 12), air sacs, liver, peritoneum, adrenal glands, heart, lymph nodes, uterus, kidneys, biliary system, bones, ears, umbilical structures, mammary glands, pancreas, placenta, and salivary glands. Infections by non-β-hemolytic Streptococcus spp. predominated in the lungs and air sacs; the most common isolate was Streptococcus pneumoniae. Infections by β-hemolytic Streptococcus spp. predominated in the soft tissues and reproductive tract. Naturally occurring β-hemolytic and non-β-hemolytic Streptococcus spp. infections cause morbidity and mortality in captive baboon populations. The lesions associated with streptococcal infection are similar to those reported in human infection. Thus, the baboon may represent an underutilized model for studying Streptococcus spp. as pathogens.

4 citations


Journal ArticleDOI
TL;DR: The baboon is a well‐characterized model of human early stage atherosclerosis and histological and morphological changes involved in atherogenesis in baboons are not known.
Abstract: INTRODUCTION The baboon is a well-characterized model of human early stage atherosclerosis. However, histological and morphological changes involved in atherogenesis in baboons are not known. Previously, we challenged baboons with a high-cholesterol, high-fat diet for two years and observed fatty streak and plaque lesions in iliac arteries (RCIA). METHODS We evaluated histological and morphological changes of baboon arterial lesions and control arteries. In addition, we evaluated the vascular expression of CD68 and SMαA markers with progression of atherosclerosis. RESULTS We observed changes that correlated with extent of atherosclerosis, including increased maximum intimal thickness. We demonstrated at molecular level the infiltration of smooth muscle cells and macrophages into the intimal layer. Further, we observed histological and morphological discordancy between the affected and adjacent areas of the same RCIA. CONCLUSION Atherogenesis in baboons is accompanied by histological, morphological, and molecular changes, as in humans, providing insights to evaluate the mechanisms underlying early stage atherosclerosis in target tissues.

4 citations


Journal ArticleDOI
TL;DR: The first reported case of PE in a rhesus macaque (Macaca mulatta) is presented and the findings are related to those described in other species.
Abstract: Perosomus Elumbis (PE) is a rare congenital disorder characterized by absence of caudal spine (lumbar, sacral, and coccygeal vertebrae). Here, we present the first reported case of PE in a rhesus macaque (Macaca mulatta) and relate our findings to those described in other species.

1 citations


Journal ArticleDOI
TL;DR: Clinical outcomes of primary gingival histoplasmosis in baboons are unknown and may complicate colony management decisions.
Abstract: Gingival lesions as the sole manifestation of African histoplasmosis (Histoplasma capsulatum var. duboisii) have never been reported in baboons. Grossly, lesions can be indistinguishable from bacterial ulcerative gingivitis or gingival hyperplasia. Clinical outcomes of primary gingival histoplasmosis in baboons are unknown, and, may complicate colony management decisions.

Posted ContentDOI
02 Dec 2020-bioRxiv
TL;DR: This is the first study comparing CON and IUGR postnatal juvenile NHP and the impact of fetal and postnatal life caloric mismatch, and it is suggested that perinatal history needs to be taken into account when assessing renal disease risk.
Abstract: Background: Poor nutrition during development programs kidney function. No studies on postnatal consequences of decreased perinatal nutrition exist in nonhuman primates (NHP) for translation to human renal disease. Our baboon model of moderate maternal nutrient restriction (MNR) produces intrauterine growth restricted (IUGR) and programs renal fetal phenotype. We hypothesized that the IUGR phenotype persists postnatally, influencing responses to a high-fat, high-carbohydrate, high-salt (HFCS) diet. Methods: Pregnant baboons ate chow (Control; CON) or 70% of control intake (MNR) from 0.16 gestation through lactation. MNR offspring were IUGR at birth. At weaning, all offspring (CON and IUGR females and males, n=3/group) ate chow. At ~4.5 years of age, blood, urine, and kidney biopsies were collected before and after a 7-week HFCS diet challenge. Kidney function, unbiased kidney gene expression, and untargeted urine metabolomics were evaluated. Results: IUGR female and male kidney transcriptome and urine metabolome differed from CON at 3.5 years, prior to HFCS. After the challenge, we observed sex-specific and fetal exposure-specific responses in urine creatinine, urine metabolites, and renal signaling pathways. Conclusions: We previously showed mTOR signaling dysregulation in IUGR fetal kidneys. Before HFCS, gene expression analysis indicated that dysregulation persists postnatally in IUGR females. IUGR male offspring response to HFCS showed uncoordinated signaling pathway responses suggestive of proximal tubule injury. To our knowledge, this is the first study comparing CON and IUGR postnatal juvenile NHP and the impact of fetal and postnatal life caloric mismatch. Perinatal history needs to be taken into account when assessing renal disease risk.

Journal ArticleDOI
TL;DR: A case of myeloproliferative disorder suggestive of acute myeloid leukemia with intraoral lesions in an olive baboon (Papio anubis) is reported.
Abstract: Spontaneous myeloid leukemia is rarely reported in non-human primates. We report a case of myeloproliferative disorder suggestive of acute myeloid leukemia with intraoral lesions in an olive baboon (Papio anubis). Clinical pathology, radiology, gross examination (pre-mortem and post-mortem), histopathology, and immunohistochemistry findings are provided.