scispace - formally typeset
Search or ask a question

Showing papers by "Gerald H. Haug published in 2017"


Journal ArticleDOI
TL;DR: It is inferred that the Mid-Pleistocene Transition was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.
Abstract: During the Mid-Pleistocene Transition (MPT; 1,200–800 kya), Earth’s orbitally paced ice age cycles intensified, lengthened from ∼40,000 (∼40 ky) to ∼100 ky, and became distinctly asymmetrical. Testing hypotheses that implicate changing atmospheric CO2 levels as a driver of the MPT has proven difficult with available observations. Here, we use orbitally resolved, boron isotope CO2 data to show that the glacial to interglacial CO2 difference increased from ∼43 to ∼75 μatm across the MPT, mainly because of lower glacial CO2 levels. Through carbon cycle modeling, we attribute this decline primarily to the initiation of substantive dust-borne iron fertilization of the Southern Ocean during peak glacial stages. We also observe a twofold steepening of the relationship between sea level and CO2-related climate forcing that is suggestive of a change in the dynamics that govern ice sheet stability, such as that expected from the removal of subglacial regolith or interhemispheric ice sheet phase-locking. We argue that neither ice sheet dynamics nor CO2 change in isolation can explain the MPT. Instead, we infer that the MPT was initiated by a change in ice sheet dynamics and that longer and deeper post-MPT ice ages were sustained by carbon cycle feedbacks related to dust fertilization of the Southern Ocean as a consequence of larger ice sheets.

167 citations


Journal ArticleDOI
TL;DR: This observational analysis is supported by climate modeling results, demonstrating that atmospheric moisture transport changes, in response to the reduced meridional sea surface temperature gradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the western subarctic Pacific and a strong PMOC.
Abstract: An essential element of modern ocean circulation and climate is the Atlantic meridional overturning circulation(AMOC), which includes deep-water formation in the subarctic North Atlantic. However, a comparable overturningcirculation is absent in the Pacific, the world’s largest ocean, where relatively fresh surface waters inhibit North Pacificdeep convection. We present complementary measurement and modeling evidence that the warm, ~400–ppmv(parts per million by volume) CO2world of the Pliocene supported subarctic North Pacific deep-water formationand a Pacific meridional overturning circulation (PMOC) cell. In Pliocene subarctic North Pacific sediments, we reportorbitally paced maxima in calcium carbonate accumulation rate, with accompanying pigment and total organiccarbon measurements supporting deep-ocean ventilation-driven preservation as their cause. Together with highaccumulation rates of biogenic opal, these findings require vigorous bidirectional communication between surfacewaters and interior waters down to ~3 km in the western subarctic North Pacific, implying deep convection. Redox-sensitive trace metal data provide further evidence of higher Pliocene deep-ocean ventilation before the 2.73-Ma(million years) transition. This observational analysis is supported by climate modeling results, demonstratingthat atmospheric moisture transport changes, in response to the reduced meridional sea surface temperaturegradients of the Pliocene, were capable of eroding the halocline, leading to deep-water formation in the westernsubarctic Pacific and a strong PMOC. This second Northern Hemisphere overturning cell has important implica-tions for heat transport, the ocean/atmosphere cycle of carbon, and potentially the equilibrium response of thePacific to global warming.

63 citations


Journal ArticleDOI
TL;DR: Measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions, provide the most spatially comprehensive evidence to date in support of the proposal that the entire Southern Ocean was nutrient-depleted during the last ice age relative to modern conditions.
Abstract: The Southern Ocean regulates the ocean’s biological sequestration of CO_2 and is widely suspected to underpin much of the ice age decline in atmospheric CO_2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the ^(15)N/^(14)N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher ^(15)N/^(14)N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.

55 citations


Journal ArticleDOI
TL;DR: This work provides the strongest data-based support for the long-standing hypothesis of changes in N loss along the ocean margin due to the cyclic drowning and emergence of the continental shelves, and implies strong local coupling of N loss to N2 fixation, the dominant N input to the ocean, thus suggesting a stable oceanic fixed N reservoir over glacial cycles.
Abstract: The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen (“fixed N”) from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N—a “sluggish” ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.

54 citations


Journal ArticleDOI
TL;DR: This work investigates the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years, and finds a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales.
Abstract: The presence of a low- to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low- to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low- to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics.

51 citations


Journal ArticleDOI
TL;DR: In this article, the role of the Atlantic in the global ocean's fixed nitrogen budget was investigated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate.
Abstract: To investigate the controls on N2 fixation and the role of the Atlantic in the global ocean's fixed nitrogen (N) budget, Atlantic N2 fixation is calculated by combining meridional nitrate fluxes across World Ocean Circulation Experiment sections with observed nitrate 15N/14N differences between northward and southward transported nitrate. N2 fixation inputs of 27.1 ± 4.3 Tg N/yr and 3.0 ± 0.5 Tg N/yr are estimated north of 11°S and 24°N, respectively. That is, ~90% of the N2 fixation in the Atlantic north of 11°S occurs south of 24°N in a region with upwelling that imports phosphorus (P) in excess of N relative to phytoplankton requirements. This suggests that, under the modern iron-rich conditions of the equatorial and North Atlantic, N2 fixation occurs predominantly in response to P-bearing, N-poor conditions. We estimate a N2 fixation rate of 30.5 ± 4.9 Tg N/yr north of 30°S, implying only 3 Tg N/yr between 30° and 11°S, despite evidence of P-bearing, N-poor surface waters in this region as well; this is consistent with iron limitation of N2 fixation in the South Atlantic. Since the ocean flows through the Atlantic surface in <2,500 years, similar to the residence time of oceanic fixed N, Atlantic N2 fixation can stabilize the N-to-P ratio of the global ocean. However, the calculated rate of Atlantic N2 fixation is a small fraction of global ocean estimates for either N2 fixation or fixed N loss. This suggests that, in the modern ocean, an approximate balance between N loss and N2 fixation is achieved within the combined Indian and Pacific basins.

40 citations


Journal ArticleDOI
TL;DR: A review of the knowledge of polar and subpolar planktic foraminifers is presented in this paper, with a focus on the response of planktic species to modern warming and ocean acidification at high latitudes and the implications for data interpretation in paleoceanography and paleoclimate research.

36 citations



Journal ArticleDOI
TL;DR: In this article, a broad range of micro-analytical techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer-to-nanometer-sized structures in these geological materials.

30 citations


Journal ArticleDOI
TL;DR: In this article, the geochemical composition of foraminifera tests from Mn-rich sediments from the Antarctic Southern Ocean (ODP Site 1094) was investigated using solution-based and laser ablation ICP-MS in order to determine the amount of Mg incorporated into the coatings.

26 citations


Journal ArticleDOI
TL;DR: The salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka, which indicates major lake-level changes in the past.
Abstract: In closed-basin lakes, sediment porewater salinity can potentially be used as a conservative tracer to reconstruct past fluctuations in lake level. However, until now, porewater salinity profiles did not allow quantitative estimates of past lake-level changes because, in contrast to the oceans, significant salinity changes (e.g., local concentration minima and maxima) had never been observed in lacustrine sediments. Here we show that the salinity measured in the sediment pore water of Lake Van (Turkey) allows straightforward reconstruction of two major transgressions and a major regression that occurred during the last 250 ka. We observed strong changes in the vertical salinity profiles of the pore water of the uppermost 100 m of the sediments in Lake Van. As the salinity balance of Lake Van is almost at steady-state, these salinity changes indicate major lake-level changes in the past. In line with previous studies on lake terraces and with seismic and sedimentological surveys, we identify two major transgressions of up to +105 m with respect to the current lake level at about 135 ka BP and 248 ka BP starting at the onset of the two previous interglacials (MIS5e and MIS7), and a major regression of about −200 m at about 30 ka BP during the last ice age.

Journal ArticleDOI
TL;DR: In this article, the authors report on silicon isotopes and germanium-to-silicon ratios in giant glass spicules of deep-sea spongeMonorhaphis chuni over the past 17,000 years.
Abstract: Silicon is a keystone nutrient in the ocean for understanding climate change because of the importance of Southern Ocean diatoms in taking up CO2 from the surface ocean-atmosphere system and sequestering carbon into the deep sea. Here we report on silicon isotopes and germanium-to-silicon ratios in giant glass spicules of deep-sea spongeMonorhaphis chuni over the past 17,000 years. In situ measurements of Si isotopes and Ge concentrations show systematic variations from rim to center of the cross sections. When calibrated against seawater concentrations using data frommodern spicule rims, sponge data indicate that dissolved silica concentrations in the deep Pacific were ~12% higher during the early deglacial. These deep Pacific Ocean data help to fill an important global gap in paleo-nutrient records. Either continental sources supplied more silica to the deglacial ocean and/or biogenic silica burial was lower, both of which may have affected atmospheric CO2.

Journal ArticleDOI
TL;DR: Foraminifera of the genus Melonis appeared to be promising candidates for temperature reconstruction due to their wide geographical and bathymetric distribution, and their infaunal habitat, which was suggested to reduce secondary effects from carbonate ion saturation (Δ[CO3 2−]). as discussed by the authors made substantial advances to previous calibration efforts and presented new multi-lab Mg/Ca data for Melonis barleeanum and Melonis pompilioides from more than one hundred core top samples spanning in situ bottom temperatures from −1 to 16 °C, coupled with morph

Journal ArticleDOI
TL;DR: In this article, the authors present a new high-resolution dust record based on 230Th-normalized 4He flux from Ocean Drilling Program site 882 in the Subarctic North Pacific covering the last 170,000 years.
Abstract: Glacial periods are recognized to be dustier than interglacials, but the conditions leading to greater dust mobilization are poorly defined. Here we present a new high-resolution dust record based on 230Th-normalized 4He flux from Ocean Drilling Program site 882 in the Subarctic North Pacific covering the last 170,000 years. By analogy with modern relationships, we infer the mechanisms controlling orbital-scale dust storm variability in East Asia. We propose that orbital-scale dust flux variability is the result of an expansion of the dust season into summer, in addition to more intense dust storms during spring and fall. The primary drivers influencing dust flux include summer insolation at subarctic latitudes and variable Siberian alpine glaciation, which together control the cold air reservoir in Siberia. Changes in the extent of the Northern Hemisphere ice sheets may be a secondary control.