scispace - formally typeset
Search or ask a question

Showing papers by "Irina V. Grigorieva published in 2018"


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmoric Fabry-Perot cavities and rectifying elements.
Abstract: Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures and strong magnetic fields) and promise a viable route for various photonic applications.

171 citations


Journal ArticleDOI
TL;DR: In this paper, the transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector, and the resistance decreases as the system goes deeper into the hydrodynamic regime.
Abstract: Viscous electron fluids have emerged recently as a new paradigm of strongly-correlated electron transport in solids. Here we report on a direct observation of the transition to this long-sought-for state of matter in a high-mobility electron system in graphene. Unexpectedly, the electron flow is found to be interaction-dominated but non-hydrodynamic (quasiballistic) in a wide temperature range, showing signatures of viscous flows only at relatively high temperatures. The transition between the two regimes is characterized by a sharp maximum of negative resistance, probed in proximity to the current injector. The resistance decreases as the system goes deeper into the hydrodynamic regime. In a perfect darkness-before-daybreak manner, the interaction-dominated negative response is strongest at the transition to the quasiballistic regime. Our work provides the first demonstration of how the viscous fluid behavior emerges in an interacting electron system.

168 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as a Fabry-Perot cavities and rectifying elements.
Abstract: Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications. Plasmons confined in field effect transistors were long envisioned for resonant detection of light at THz frequencies, however realization of such photodetectors has proven challenging. Here, the authors fabricate antenna-coupled graphene transistors which exhibit resonant photoresponse to incident radiation and use them to study plasmons in graphene and its moire superlattices.

125 citations


Journal ArticleDOI
01 Jun 2018-Nature
TL;DR: In this paper, it was shown that surface scattering can be either diffuse or specular, depending on the fine details of the atomic landscape of the surface, and that quantum effects contribute to the specularity at room temperature.
Abstract: Gas permeation through nanoscale pores is ubiquitous in nature and has an important role in many technologies1,2. Because the pore size is typically smaller than the mean free path of gas molecules, the flow of the gas molecules is conventionally described by Knudsen theory, which assumes diffuse reflection (random-angle scattering) at confining walls3-7. This assumption holds surprisingly well in experiments, with only a few cases of partially specular (mirror-like) reflection known5,8-11. Here we report gas transport through angstrom-scale channels with atomically flat walls12,13 and show that surface scattering can be either diffuse or specular, depending on the fine details of the atomic landscape of the surface, and that quantum effects contribute to the specularity at room temperature. The channels, made from graphene or boron nitride, allow helium gas flow that is orders of magnitude faster than expected from theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels, but with molybdenum disulfide walls, exhibit much slower permeation that remains well described by Knudsen diffusion. We attribute the difference to the larger atomic corrugations at molybdenum disulfide surfaces, which are similar in height to the size of the atoms being transported and their de Broglie wavelength. The importance of this matter-wave contribution is corroborated by the observation of a reversed isotope effect, whereby the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into the atomistic details of molecular permeation, which previously could be accessed only in simulations10,14, and demonstrate the possibility of studying gas transport under controlled confinement comparable in size to the quantum-mechanical size of atoms.

107 citations


Journal ArticleDOI
TL;DR: The results provide insights into the atomistic details of molecular permeation, which previously could be accessed only in simulations, and demonstrate the possibility of studying gas transport under controlled confinement comparable in size to the quantum-mechanical size of atoms.
Abstract: Gas permeation through nanoscale pores is ubiquitous in nature and plays an important role in a plethora of technologies. Because the pore size is typically smaller than the mean free path of gas molecules, their flow is conventionally described by the Knudsen theory that assumes diffuse reflection (random-angle scattering) at confining walls. This assumption has proven to hold surprisingly well in experiment, and only a few cases of partially specular (mirror-like) reflection are known. Here we report gas transport through angstrom-scale channels with atomically-flat walls and show that surface scattering can be both diffuse or specular, depending on fine details of the surface atomic landscape, and quantum effects contribute to the specularity at room temperature. The channels made from graphene or boron nitride allow a helium gas flow that is orders of magnitude faster than expected from the theory. This is explained by specular surface scattering, which leads to ballistic transport and frictionless gas flow. Similar channels but with molybdenum disulfide walls exhibit much slower permeation that remains well described by Knudsen diffusion. The difference is attributed to stronger atomic corrugations at MoS2 surfaces, which are similar in height to the size of transported atoms and their de Broglie wavelength. The importance of the latter, matter-wave contribution is corroborated by the observation of a reversed isotope effect in which the mass flow of hydrogen is notably higher than that of deuterium, in contrast to the relation expected for classical flows. Our results provide insights into atomistic details of molecular permeation, which so far could be accessed only in simulations, and show a possibility of studying gas transport under a controlled confinement comparable to the quantum-mechanical size of atoms.

82 citations


Journal ArticleDOI
TL;DR: Measurements of both the superconducting energy gap Δ and critical temperature TC in high-quality monocrystals of few-layer NbSe2 show a fully developed gap that rapidly reduces for devices with the number of layers N ≤ 5, as does their TC, and shows that the observed reduction cannot be explained by disorder.
Abstract: It is well-known that superconductivity in thin films is generally suppressed with decreasing thickness. This suppression is normally governed by either disorder-induced localization of Cooper pairs, weakening of Coulomb screening, or generation and unbinding of vortex–antivortex pairs as described by the Berezinskii–Kosterlitz–Thouless (BKT) theory. Defying general expectations, few-layer NbSe2, an archetypal example of ultrathin superconductors, has been found to remain superconducting down to monolayer thickness. Here, we report measurements of both the superconducting energy gap Δ and critical temperature TC in high-quality monocrystals of few-layer NbSe2, using planar-junction tunneling spectroscopy and lateral transport. We observe a fully developed gap that rapidly reduces for devices with the number of layers N ≤ 5, as does their TC. We show that the observed reduction cannot be explained by disorder, and the BKT mechanism is also excluded by measuring its transition temperature that for all N rem...

76 citations


Journal ArticleDOI
TL;DR: In this paper, the role of photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene field effect transistors was analyzed at different temperatures.
Abstract: Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

60 citations


Journal ArticleDOI
TL;DR: In this paper, van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature, even for the lightest atom, hydrogen.
Abstract: Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength At room temperature this length is only about one angstrom even for the lightest atom, hydrogen This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures1–5 Here, we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide This is attributed to the difference in the de Broglie wavelengths of the isotopes Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates comparable to that of protons in water The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes

41 citations


Journal ArticleDOI
TL;DR: The study shows the potential of using atomically thin hBN barriers with defects to engineer the magnetoresistance of MTJs and to achieve spin filtering, opening the door toward exploiting the spin degree of freedom in current studies of point defects as quantum emitters.
Abstract: Hexagonal boron nitride (hBN) is a prototypical high-quality two-dimensional insulator and an ideal material to study tunneling phenomena, as it can be easily integrated in vertical van der Waals devices. For spintronic devices, its potential has been demonstrated both for efficient spin injection in lateral spin valves and as a barrier in magnetic tunnel junctions (MTJs). Here we reveal the effect of point defects inevitably present in mechanically exfoliated hBN on the tunnel magnetoresistance of Co-hBN-NiFe MTJs. We observe a clear enhancement of both the conductance and magnetoresistance of the junction at well-defined bias voltages, indicating resonant tunneling through magnetic (spin-polarized) defect states. The spin polarization of the defect states is attributed to exchange coupling of a paramagnetic impurity in the few-atomic-layer thick hBN to the ferromagnetic electrodes. This is confirmed by excellent agreement with theoretical modeling. Our findings should be taken into account in analyzing ...

17 citations


Journal ArticleDOI
TL;DR: It is shown that van der Waals gaps between atomic planes of layered crystals provide ångström-size channels that make quantum confinement of protons apparent even at room temperature, restricting quantum-confinement phenomena for atomic species to the realm of very low temperatures.
Abstract: Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures. Here we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in de Broglie wavelength of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates, comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.

14 citations


Journal ArticleDOI
TL;DR: It is found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect, a qualitative deviation from the standard behavior in electron systems with high viscosity.
Abstract: Materials subjected to a magnetic field exhibit the Hall effect, a phenomenon studied and understood in fine detail. Here we report a qualitative breach of this classical behavior in electron systems with high viscosity. The viscous fluid in graphene is found to respond to non-quantizing magnetic fields by producing an electric field opposite to that generated by the classical Hall effect. The viscous contribution is large and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyze the anomaly over a wide range of temperatures and carrier densities and extract the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiment. Good agreement with theory suggests further opportunities for studying electron magnetohydrodynamics.