scispace - formally typeset
Search or ask a question

Showing papers by "Markus Hoffmann published in 2022"



letters-and-commentsDOI
01 Apr 2022
TL;DR: The results show that all presently circulating omicron subvariants evade neutralisation by vaccine-induced antibodies with comparably high efficiency, suggesting that increased antibody evasion is not the reason for the current expansion of BA.2 in several countries.

64 citations



Journal ArticleDOI
TL;DR: All sublineages were comparably and efficiently neutralized by antibodies induced by BNT162b2 booster vaccination after previous two-dose homologous or heterologous vaccination.

29 citations


Journal ArticleDOI
TL;DR: In this article , the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections was explored.
Abstract: Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.

21 citations


Journal ArticleDOI
TL;DR: In this article , the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections was explored.
Abstract: Coronavirus disease 2019 (COVID-19), the illness caused by a novel coronavirus now called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has led to more than 260 million confirmed infections and 5 million deaths to date. While vaccination is a powerful tool to control pandemic spread, medication to relieve COVID-19-associated symptoms and alleviate disease progression especially in high-risk patients is still lacking. In this study, we explore the suitability of the rapid accelerated fibrosarcoma/mitogen-activated protein kinase/extracellular signal-regulated kinase (Raf/MEK/ERK) pathway as a druggable target in the treatment of SARS-CoV-2 infections. We find that SARS-CoV-2 transiently activates Raf/MEK/ERK signaling in the very early infection phase and that ERK1/2 knockdown limits virus replication in cell culture models. We demonstrate that ATR-002, a specific inhibitor of the upstream MEK1/2 kinases which is currently evaluated in clinical trials as an anti-influenza drug, displays strong anti-SARS-CoV-2 activity in cell lines as well as in primary air-liquid-interphase epithelial cell (ALI) cultures, with a safe and selective treatment window. We also observe that ATR-002 treatment impairs the SARS-CoV-2-induced expression of pro-inflammatory cytokines, and thus might prevent COVID-19-associated hyperinflammation, a key player in COVID-19 progression. Thus, our data suggest that the Raf/MEK/ERK signaling cascade may represent a target for therapeutic intervention strategies against SARS-CoV-2 infections and that ATR-002 is a promising candidate for further drug evaluation.

20 citations


Journal ArticleDOI
TL;DR: The spike (S) protein of the SARS-CoV-2 Omicron variant is highly mutated but the impact of these mutations on viral entry into cells and its inhibition by antibodies has been unclear, according to a recent study published in Science.

18 citations



Journal ArticleDOI
TL;DR: The results suggest that a ‘booster’ after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.
Abstract: In light of the decreasing immune protection against symptomatic SARS-CoV-2 infection after initial vaccinations and the now dominant immune-evasive Omicron variants, ‘booster’ vaccinations are regularly performed to restore immune responses. Many individuals have received a primary heterologous prime-boost vaccination with long intervals between vaccinations, but the resulting long-term immunity and the effects of a subsequent ‘booster’, particularly against Omicron BA.1, have not been defined. We followed a cohort of 23 young adults, who received a primary heterologous ChAdOx1 nCoV-19 BNT162b2 prime-boost vaccination, over a 7-month period and analysed how they responded to a BNT162b2 ‘booster’. We show that already after the primary heterologous vaccination, neutralization titers against Omicron BA.1 are recognizable but that humoral and cellular immunity wanes over the course of half a year. Residual responsive memory T cells recognized spike epitopes of the early SARS-CoV-2 B.1 strain as well as the Delta and BA.1 variants of concern (VOCs). However, the remaining antibody titers hardly neutralized these VOCs. The ‘booster’ vaccination was well tolerated and elicited both high antibody titers and increased memory T cell responses against SARS-CoV-2 including BA.1. Strikingly, in this young heterologously vaccinated cohort the neutralizing activity after the ‘booster’ was almost as potent against BA.1 as against the early B.1 strain. Our results suggest that a ‘booster’ after heterologous vaccination results in effective immune maturation and potent protection against the Omicron BA.1 variant in young adults.

12 citations


Journal ArticleDOI
TL;DR: Li et al. as mentioned in this paper reconstituted an in vitro pseudovirus-liposome fusion reaction and reported that SARS-CoV-2 wild-type spike is a dynamic Ca2+ sensor, and D614G mutation enhances dynamic calcium sensitivity of spike protein for facilitating membrane fusion.

10 citations


Journal ArticleDOI
TL;DR: It is shown that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and mathematical modeling is used to show that these drug combinations are likely to work in people and bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.
Abstract: Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. ABSTRACT Three directly acting antivirals (DAAs) demonstrated substantial reduction in COVID-19 hospitalizations and deaths in clinical trials. However, these agents did not completely prevent severe illness and are associated with cases of rebound illness and viral shedding. Combination regimens can enhance antiviral potency, reduce the emergence of drug-resistant variants, and lower the dose of each component in the combination. Concurrently targeting virus entry and virus replication offers opportunities to discover synergistic drug combinations. While combination antiviral drug treatments are standard for chronic RNA virus infections, no antiviral combination therapy has been approved for SARS-CoV-2. Here, we demonstrate that combining host-targeting antivirals (HTAs) that target TMPRSS2 and hence SARS-CoV-2 entry, with the DAA molnupiravir, which targets SARS-CoV-2 replication, synergistically suppresses SARS-CoV-2 infection in Calu-3 lung epithelial cells. Strong synergy was observed when molnupiravir, an oral drug, was combined with three TMPRSS2 (HTA) oral or inhaled inhibitors: camostat, avoralstat, or nafamostat. The combination of camostat plus molnupiravir was also effective against the beta and delta variants of concern. The pyrimidine biosynthesis inhibitor brequinar combined with molnupiravir also conferred robust synergistic inhibition. These HTA+DAA combinations had similar potency to the synergistic all-DAA combination of molnupiravir plus nirmatrelvir, the protease inhibitor found in paxlovid. Pharmacodynamic modeling allowed estimates of antiviral potency at all possible concentrations of each agent within plausible therapeutic ranges, suggesting possible in vivo efficacy. The triple combination of camostat, brequinar, and molnupiravir further increased antiviral potency. These findings support the development of HTA+DAA combinations for pandemic response and preparedness. IMPORTANCE Imagine a future viral pandemic where if you test positive for the new virus, you can quickly take some medicines at home for a few days so that you do not get too sick. To date, only single drugs have been approved for outpatient use against SARS-CoV-2, and we are learning that these have some limitations and may succumb to drug resistance. Here, we show that combinations of two oral drugs are better than the single ones in blocking SARS-CoV-2, and we use mathematical modeling to show that these drug combinations are likely to work in people. We also show that a combination of three oral drugs works even better at eradicating the virus. Our findings therefore bode well for the development of oral drug cocktails for at home use at the first sign of an infection by a coronavirus or other emerging viral pathogens.

Journal ArticleDOI
TL;DR: There is compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain.
Abstract: Effective vaccines and monoclonal antibodies have been developed against coronavirus disease 2019 (COVID‐19) caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). However, the appearance of virus variants with higher transmissibility and pathogenicity is a major concern because of their potential to escape vaccines and clinically approved SARS‐CoV‐2‐ antibodies. Here, we use flow cytometry‐based binding and pseudotyped SARS‐CoV‐2 neutralization assays to determine the efficacy of boost immunization and therapeutic antibodies to neutralize the dominant Omicron variant. We provide compelling evidence that the third vaccination with BNT162b2 increases the amount of neutralizing serum antibodies against Delta and Omicron variants, albeit to a lower degree when compared to the parental Wuhan strain. Therefore, a third vaccination is warranted to increase titers of protective serum antibodies, especially in the case of the Omicron variant. We also found that most clinically approved and otherwise potent therapeutic antibodies against the Delta variant failed to recognize and neutralize the Omicron variant. In contrast, some antibodies under preclinical development potentially neutralized the Omicron variant. Our studies also support using a flow cytometry‐based antibody binding assay to rapidly monitor therapeutic candidates and serum titers against emerging SARS‐CoV‐2 variants.

Journal ArticleDOI
25 Apr 2022-Mbio
TL;DR: It is suggested that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy.
Abstract: The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy. ABSTRACT SARS-CoV-2 variants of concern (VOC) acquired mutations in the spike (S) protein, including E484K, that confer resistance to neutralizing antibodies. However, it is incompletely understood how these mutations impact viral entry into host cells. Here, we analyzed how mutations at position 484 that have been detected in COVID-19 patients impact cell entry and antibody-mediated neutralization. We report that mutation E484D markedly increased SARS-CoV-2 S-driven entry into the hepatoma cell line Huh-7 and the lung cell NCI-H1299 without augmenting ACE2 binding. Notably, mutation E484D largely rescued Huh-7 but not Vero cell entry from blockade by the neutralizing antibody Imdevimab and rendered Huh-7 cell entry ACE2-independent. These results suggest that the naturally occurring mutation E484D allows SARS-CoV-2 to employ an ACE2-independent mechanism for entry that is largely insensitive against Imdevimab, an antibody employed for COVID-19 therapy. IMPORTANCE The interaction of the SARS-CoV-2 spike protein (S) with the cellular receptor ACE2 is considered essential for infection and constitutes the key target for antibodies induced upon infection and vaccination. Here, using a surrogate system for viral entry, we provide evidence that a naturally occurring mutation can liberate SARS-CoV-2 from ACE2-dependence and that ACE2-independent entry may protect the virus from neutralization by an antibody used for COVID-19 therapy.

Journal ArticleDOI
TL;DR: Thiol drugs decrease SARS-CoV-2 lung inflammation and injury and it is speculated that the concentration of cysteamine achieved in the lungs with IP delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects.
Abstract: The redox status of the cysteine-rich SARS-CoV-2 spike glycoprotein (SARS-2-S) is important for binding of SARS-2-S to ACE2, suggesting that drugs with a functional thiol group ("thiol drugs") may cleave cystines to disrupt SARS-CoV-2 cell entry. In addition, neutrophil-induced oxidative stress is a mechanism of COVID-19 lung injury, and the antioxidant and anti-inflammatory properties of thiol drugs, especially cysteamine, may limit this injury. To first explore antiviral effects of thiol drugs in COVID-19, we used an ACE-2 binding assay and cell entry assays utilizing reporter pseudoviruses and authentic SARS-CoV-2 viruses. We found that multiple thiol drugs inhibit SARS-2-S binding to ACE2 and virus infection. The most potent drugs were effective in the low millimolar range, and IC50 values followed the order of their cystine cleavage rates and lower thiol pKa values. To determine if thiol drugs have antiviral effects in vivo and to explore any anti-inflammatory effects of thiol drugs in COVID-19, we tested the effects of cysteamine delivered intraperitoneally (IP) to hamsters infected with SARS-CoV-2. Cysteamine did not decrease lung viral infection but it significantly decreased lung neutrophilic inflammation and alveolar hemorrhage. We speculate that the concentration of cysteamine achieved in the lungs with IP delivery was insufficient for antiviral effects but sufficient for anti-inflammatory effects. We conclude that thiol drugs decrease SARS-CoV-2 lung inflammation and injury and we provide rationale for future studies to test if direct (aerosol) delivery of thiol drugs to the airways might also result in antiviral effects.

Journal ArticleDOI
TL;DR: These data demonstrate long‐lived antibody‐mediated immunity after SARS‐CoV‐2 infection, and a clear benefit of two vaccine doses for recovered individuals.
Abstract: Neutralizing antibodies against SARS‐CoV‐2 are important to protect against infection and/or disease. Using an assay to detect antibodies directed against the receptor binding domain (RBD) of SARS‐CoV‐2 Spike, we identified individuals with SARS‐CoV‐2 infection after an outbreak at a local health institution. All but one COVID‐19 patient developed detectable anti‐RBD antibodies and 77% had virus neutralizing antibody titers of >1:25. Antibody levels declined slightly over time. However, we still detected virus neutralizing antibody titers in 64% of the COVID‐19 patients at >300 days after infection, demonstrating durability of neutralizing antibody levels after infection. Importantly, full COVID‐19 vaccination of these individuals resulted in higher antibody titers compared to fully vaccinated individuals in the absence of prior infection. These data demonstrate long‐lived antibody‐mediated immunity after SARS‐CoV‐2 infection, and a clear benefit of two vaccine doses for recovered individuals.

letters-and-commentsDOI
01 Sep 2022
TL;DR: The host cell entry and neutralisation sensitivity of BA.2.75 is investigated and the ability of the SARS-CoV-2 spike protein to fuse cells and cause the formation of multinucleated giant cells is believed to contribute to pathogenesis.

Journal ArticleDOI
TL;DR: In this article , mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies, and mutations in S protein can modulate viral transmissibility and pathogenicity.
Abstract: Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.

Journal ArticleDOI
TL;DR: In this article , mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies, and mutations in S protein can modulate viral transmissibility and pathogenicity.
Abstract: Since the beginning of the COVID-19 pandemic, multiple SARS-CoV-2 variants have emerged. While some variants spread only locally, others, referred to as variants of concern, disseminated globally and became drivers of the pandemic. All SARS-CoV-2 variants harbor mutations relative to the virus circulating early in the pandemic, and mutations in the viral spike (S) protein are considered of particular relevance since the S protein mediates host cell entry and constitutes the key target of the neutralizing antibody response. As a consequence, mutations in the S protein may increase SARS-CoV-2 infectivity and enable its evasion of neutralizing antibodies. Furthermore, mutations in the S protein can modulate viral transmissibility and pathogenicity.

Journal ArticleDOI
TL;DR: It is shown that activation of AT by anticoagulants increases the anti‐TMPRSS2 and anti‐SARS‐CoV‐2 activity of AT, suggesting that repurposing of native and activated AT for COVID‐19 treatment should be explored.
Abstract: Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad‐spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS‐CoV, MERS‐CoV, hCoV‐229E, SARS‐CoV‐2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS‐CoV‐2. Thus, AT is an endogenous inhibitor of SARS‐CoV‐2 that may be involved in COVID‐19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti‐TMPRSS2 and anti‐SARS‐CoV‐2 activity of AT, suggesting that repurposing of native and activated AT for COVID‐19 treatment should be explored.

Journal ArticleDOI
09 Dec 2022-Viruses
TL;DR: In this article , the authors show that loss of TMPRSS2 strongly reduced the replication of the SARS-CoV-2 Beta and Omicron infection in C57BL mice and protected the animals from weight loss and disease.
Abstract: The COVID-19 pandemic remains a global health threat and novel antiviral strategies are urgently needed. SARS-CoV-2 employs the cellular serine protease TMPRSS2 for entry into lung cells and TMPRSS2 inhibitors are being developed for COVID-19 therapy. However, the SARS-CoV-2 Omicron variant, which currently dominates the pandemic, prefers the endo/lysosomal cysteine protease cathepsin L over TMPRSS2 for cell entry, raising doubts whether TMPRSS2 inhibitors would be suitable for treatment of patients infected with the Omicron variant. Nevertheless, the contribution of TMPRSS2 to spread of SARS-CoV-2 in the infected host is largely unclear. Here, we show that loss of TMPRSS2 strongly reduced the replication of the Beta variant in nose, trachea and lung of C57BL mice and protected the animals from weight loss and disease. Infection of mice with the Omicron variant did not cause disease, as expected, but again TMPRSS2 was essential for efficient viral spread in the upper and lower respiratory tract. These results identify a key role of TMPRSS2 in SARS-CoV-2 Beta and Omicron infection and highlight TMPRSS2 as an attractive target for antiviral intervention.

Journal ArticleDOI
TL;DR: In this article , two recombinant murine CMV (MCMV) vaccine vectors were generated for expressing hemagglutinin (HA) of influenza A virus and spike protein of severe acute respiratory syndrome coronavirus 2.
Abstract: Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a β-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Journal ArticleDOI
TL;DR: In this article , the authors show that C.1.2 and B.621 are resistant to neutralization by bamlanivimab but remain sensitive to inhibition by antibody cocktails used for COVID-19 therapy.

Journal ArticleDOI
TL;DR: Inflammatory tissue priming is dependent on transcriptional regulation by BET proteins, which makes them promising therapeutic targets for preventing arthritis flares in previously affected joints.
Abstract: We have recently shown that priming of synovial fibroblasts (SFs) drives arthritis flares. Pathogenic priming of SFs is essentially mediated by epigenetic reprogramming. Bromodomain and extraterminal motif (BET) proteins translate epigenetic changes into transcription. Here, we used a BET inhibitor (I‐BET151) to target inflammatory tissue priming and to reduce flare severity in a murine experimental arthritis model.

Journal ArticleDOI
TL;DR: In this article , the authors describe the in-silico development and in vitro characterization of peptidomimetic transmembrane serine protease 2 (TMPRSS2) inhibitors and demonstrate good off-target selectivity against selected coagulation proteases.
Abstract: Abstract The transmembrane serine protease 2 (TMPRSS2) primes the SARS-CoV-2 Spike (S) protein for host cell entry and represents a promising target for COVID-19 therapy. Here we describe the in silico development and in vitro characterization of peptidomimetic TMPRSS2 inhibitors. Molecular docking studies identified peptidomimetic binders of the TMPRSS2 catalytic site, which were synthesized and coupled to an electrophilic serine trap. The compounds inhibit TMPRSS2 while demonstrating good off-target selectivity against selected coagulation proteases. Lead candidates are stable in blood serum and plasma for at least ten days. Finally, we show that selected peptidomimetics inhibit SARS-CoV-2 Spike-driven pseudovirus entry and authentic SARS-CoV-2 infection with comparable efficacy as camostat mesylate. The peptidomimetic TMPRSS2 inhibitors also prevent entry of recent SARS-CoV-2 variants of concern Delta and Omicron BA.1. In sum, our study reports antivirally active and stable TMPRSS2 inhibitors with prospects for further preclinical and clinical development as antiviral agents against SARS-CoV-2 and other TMPRSS2-dependent viruses.

Journal ArticleDOI
30 Jun 2022-Viruses
TL;DR: The results support the notion that SFL binds to the ribosome and the HIV RNA in order to block –1PRF and HIV infection, and suggest that the multimerization of SFL may be functionally important.
Abstract: The interferon-induced host cell protein shiftless (SFL) was reported to inhibit human immunodeficiency virus (HIV) infection by blocking the –1 programmed ribosomal frameshifting (–1PRF) required for expression of the Gag-Pol polyprotein. However, it is not clear how SFL inhibits –1PRF. To address this question, we focused on a 36 amino acids comprising region (termed required for antiviral activity (RAA)) that is essential for suppression of –1PRF and HIV infection and is missing from SFL short (SFLS), a splice variant of SFL with unknown function. Here, we confirm that SFL, but not SFLS, inhibits HIV –1PRF and show that inhibition is cell-type-independent. Mutagenic and biochemical analyses demonstrated that the RAA region is required for SFL self-interactions and confirmed that it is necessary for ribosome association and binding to the HIV RNA. Analysis of SFL mutants with six consecutive amino-acids-comprising deletions in the RAA region suggests effects on binding to the HIV RNA, complete inhibition of –1PRF, inhibition of Gag-Pol expression, and antiviral activity. In contrast, these amino acids did not affect SFL expression and were partially dispensable for SFL self-interactions and binding to the ribosome. Collectively, our results support the notion that SFL binds to the ribosome and the HIV RNA in order to block –1PRF and HIV infection, and suggest that the multimerization of SFL may be functionally important.

Journal ArticleDOI
TL;DR: In this article , a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant.
Abstract: Recently, a recombinant SARS-CoV-2 lineage, XD, emerged that harbors a spike gene that is largely derived from the Omicron variant BA.1 in the genetic background of the Delta variant. This finding raised concerns that the recombinant virus might exhibit altered biological properties as compared to the parental viruses and might pose an elevated threat to human health. Here, using pseudotyped particles, we show that ACE2 binding and cell tropism of XD mimics that of BA.1. Further, XD and BA.1 displayed comparable sensitivity to neutralization by antibodies induced upon vaccination with BNT162b2/Comirnaty (BNT) or BNT vaccination followed by breakthrough infection. Our findings reveal important biological commonalities between XD and Omicron BA.1 host cell entry and its inhibition by antibodies.

Journal ArticleDOI
TL;DR: In this paper , an overview on complement activation and inflammatory transformation in tissue-occupying cells, focusing on fibroblasts during arthritis, and illustrate ways how therapeutics directed at complement C3 could potentially target the complosome to unprime cells in the tissue and induce long-lasting abatement of inflammation.

Journal ArticleDOI
TL;DR: This work comments on host cell interactions governing cell entry of the Omicron variant and their implications for transmissibility, virulence, immune evasion, and therapeutic options, and focuses on the viral spike protein, which facilitates viral entry into cells and is the key target of the neutralizing antibody response.
Abstract: The severe acute respiratory syndrome coronavirus 2 Omicron variant (B.1.1.529) swept the globe with breathtaking speed, rapidly displacing the Delta variant and causing record numbers of new infections. Many questions regarding the Omicron variant are open, including its origin, which may reside in animals, immunocompromised human patients, or secluded human populations, and potential differences in the biological properties of the Omicron sublineages, BA.1, BA.2, and BA.3. Here, we will comment on host cell interactions governing cell entry of the Omicron variant and their implications for transmissibility, virulence, immune evasion, and therapeutic options. Our focus will be on the viral spike (S) protein, which facilitates viral entry into cells and is the key target of the neutralizing antibody response. We will address the following questions:

Journal ArticleDOI
TL;DR: Novel camelid heavy-chain-only antibodies (hcAb) are described as useful for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity.
Abstract: Introduction The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods Five antibody candidates were selected out of a naïve camelid library by phage display and expressed as full-length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy. Graphical Abstract