scispace - formally typeset
Y

Yi Cui

Researcher at Stanford University

Publications -  1109
Citations -  245406

Yi Cui is an academic researcher from Stanford University. The author has contributed to research in topics: Anode & Lithium. The author has an hindex of 220, co-authored 1015 publications receiving 199725 citations. Previous affiliations of Yi Cui include KAIST & University of California, Berkeley.

Papers
More filters
Posted Content

Mn3O4-Graphene Hybrid as a High Capacity Anode Material for Lithium Ion Batteries

TL;DR: The two-step solution-phase reactions to form hybrid materials of Mn(3)O(4) nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials.
Journal ArticleDOI

Interconnected hollow carbon nanospheres for stable lithium metal anodes

TL;DR: It is shown that coating the lithium metal anode with a monolayer of interconnected amorphous hollow carbon nanospheres helps isolate the lithiumMetal depositions and facilitates the formation of a stable solid electrolyte interphase, indicating that nanoscale interfacial engineering could be a promising strategy to tackle the intrinsic problems of lithiumMetal anode cycling.
Journal ArticleDOI

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.

TL;DR: A composite lithium metal anode is reported that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility and a full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.
Journal ArticleDOI

Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

TL;DR: Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods.
Journal ArticleDOI

Stretchable, Porous, and Conductive Energy Textiles

TL;DR: Wearable power devices using everyday textiles as the platform, with an extremely simple "dipping and drying" process using single-walled carbon nanotube (SWNT) ink, are described, which show outstanding flexibility and stretchability and demonstrate strong adhesion between the SWNTs and the textiles of interest.