scispace - formally typeset
Search or ask a question
Institution

Braunschweig University of Technology

EducationBraunschweig, Germany
About: Braunschweig University of Technology is a education organization based out in Braunschweig, Germany. It is known for research contribution in the topics: Population & Computer science. The organization has 13268 authors who have published 26707 publications receiving 611590 citations.


Papers
More filters
Journal ArticleDOI
A. Aab1, P. Abreu2, Marco Aglietta3, Marco Aglietta4  +420 moreInstitutions (65)
TL;DR: In this paper, the authors presented a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory.
Abstract: We present a combined fit of a simple astrophysical model of UHECR sources to both the energy spectrum and mass composition data measured by the Pierre Auger Observatory. The fit has been performed for energies above $5 \cdot 10^{18}$ eV, i.e.~the region of the all-particle spectrum above the so-called "ankle" feature. The astrophysical model we adopted consists of identical sources uniformly distributed in a comoving volume, where nuclei are accelerated through a rigidity-dependent mechanism. The fit results suggest sources characterized by relatively low maximum injection energies, hard spectra and heavy chemical composition. We also show that uncertainties about physical quantities relevant to UHECR propagation and shower development have a non-negligible impact on the fit results.

159 citations

Journal ArticleDOI
TL;DR: Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.
Abstract: The interaction between the cytoskeletal proteins talin and vinculin plays a key role in integrin-mediated cell adhesion and migration. We have determined the crystal structures of two domains from the talin rod spanning residues 482–789. Talin 482–655, which contains a vinculin-binding site (VBS), folds into a five-helix bundle whereas talin 656–789 is a four-helix bundle. We show that the VBS is composed of a hydrophobic surface spanning five turns of helix 4. All the key side chains from the VBS are buried and contribute to the hydrophobic core of the talin 482–655 fold. We demonstrate that the talin 482–655 five-helix bundle represents an inactive conformation, and mutations that disrupt the hydrophobic core or deletion of helix 5 are required to induce an active conformation in which the VBS is exposed. We also report the crystal structure of the N-terminal vinculin head domain in complex with an activated form of talin. Activation of the VBS in talin and the recruitment of vinculin may support the maturation of small integrin/talin complexes into more stable adhesions.

159 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented an overview of the regional morphology of comet 67P/C-G and used the images that were acquired at orbits ~20-30 km from the center of the comet to distinguish different regions on the surface and introduce the basic regional nomenclature adopted by all papers in this issue that address the comet morphology and surface processes.
Abstract: The OSIRIS camera onboard the Rosetta spacecraft has been acquiring images of the comet 67P/Churyumov-Gerasimenko (67P/C-G)’s nucleus at spatial resolutions down to ~0.17 m/px ever since Aug 2014. These images have yielded unprecedented insight into the morphological diversity of the comet’s surface. This paper presents an overview of the regional morphology of comet 67P/C-G. Methods. We used the images that were acquired at orbits ~20–30 km from the center of the comet to distinguish different regions on the surface and introduce the basic regional nomenclature adopted by all papers in this issue that address the comet’s morphology and surface processes. We used anaglyphs to detect subtle regional and topographical boundaries and images from close orbit (~10 km from the comet’s center) to investigate the fine texture of the surface. Results. Nineteen regions have currently been defined on the nucleus based on morphological and/or structural boundaries, and they can be grouped into distinctive region types. Consolidated, fractured regions are the most common region type. Some of these regions enclose smooth units that appear to settle in gravitational sinks or topographically low areas. Both comet lobes have a significant portion of their surface covered by a dusty coating that appears to be recently placed and shows signs of mobilization by aeolian- like processes. The dusty coatings cover most of the regions on the surface but are notably absent from a couple of irregular large depressions that show sharp contacts with their surroundings and talus-like deposits in their interiors, which suggests that short- term explosive activity may play a significant role in shaping the comet’s surface in addition to long-term sublimation loss. Finally, the presence of layered brittle units showing signs of mechanical failure predominantly in one of the comet’s lobes can indicate a compositional heterogeneity between the two lobes.

159 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined peat humification with depth by Fourier Transformed Infrared (FTIR) measurements of solid peat, C/N ratio, and δ13C, δ15N isotope measurements in three bog sites.
Abstract: . Ombrotrophic bogs in southern Patagonia have been examined with regard to paleoclimatic and geochemical research questions but knowledge about organic matter decomposition in these bogs is limited. Therefore, we examined peat humification with depth by Fourier Transformed Infrared (FTIR) measurements of solid peat, C/N ratio, and δ13C and δ15N isotope measurements in three bog sites. Peat decomposition generally increased with depth but distinct small scale variation occurred, reflecting fluctuations in factors controlling decomposition. C/N ratios varied mostly between 40 and 120 and were significantly correlated (R2 > 0.55, p

159 citations

Journal ArticleDOI
TL;DR: Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding the shape in the staging algorithm instead of the tiles, and it is shown how staged assembly in theory enables manufacture of arbitrary shapes in a variety of precise formulations of the model.
Abstract: We introduce staged self-assembly of Wang tiles, where tiles can be added dynamically in sequence and where intermediate constructions can be stored for later mixing. This model and its various constraints and performance measures are motivated by a practical nanofabrication scenario through protein-based bioengineering. Staging allows us to break through the traditional lower bounds in tile self-assembly by encoding the shape in the staging algorithm instead of the tiles. All of our results are based on the practical assumption that only a constant number of glues, and thus only a constant number of tiles, can be engineered. Under this assumption, traditional tile self-assembly cannot even manufacture an n × n square; in contrast, we show how staged assembly in theory enables manufacture of arbitrary shapes in a variety of precise formulations of the model.

159 citations


Authors

Showing all 13486 results

NameH-indexPapersCitations
Wolfgang Wagner1562342123391
Helmut Sies13367078319
Cristina Riccardi129162791452
Klaus-Robert Müller12976479391
Alex Zunger12882678798
Rolf Müller10490550027
Rudolf Valenta10274838349
Oliver G. Schmidt100108339988
Kenneth N. Timmis9736534912
Thomas Braun9674438576
Ursula Keller9293433229
William Martin9034834353
Bruce T. Tsurutani8560530358
Michael Wink8393832658
Yves-Alain Barde8316835485
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Technische Universität München
123.4K papers, 4M citations

92% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023133
2022333
20211,553
20201,595
20191,637
20181,473