scispace - formally typeset
Search or ask a question

Showing papers by "Braunschweig University of Technology published in 2018"


Proceedings ArticleDOI
07 Nov 2018
TL;DR: The latest developments concerning intermodal traffic solutions, simulator coupling and model development and validation on the example of the open source traffic simulator SUMO are presented.
Abstract: Microscopic traffic simulation is an invaluable tool for traffic research. In recent years, both the scope of research and the capabilities of the tools have been extended considerably. This article presents the latest developments concerning intermodal traffic solutions, simulator coupling and model development and validation on the example of the open source traffic simulator SUMO.

1,722 citations


Journal ArticleDOI
09 Aug 2018-Nature
TL;DR: It is shown that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance, and that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
Abstract: Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1–4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial–fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.

1,108 citations


Journal ArticleDOI
TL;DR: An introductory summary of the state-of-the-art production technologies for automotive LIBs is presented and the importance of understanding relationships between the production process and battery performance is discussed.
Abstract: Production technology for automotive lithium-ion battery (LIB) cells and packs has improved considerably in the past five years. However, the transfer of developments in materials, cell design and processes from lab scale to production scale remains a challenge due to the large number of consecutive process steps and the significant impact of material properties, electrode compositions and cell designs on processes. This requires an in-depth understanding of the individual production processes and their interactions, and pilot-scale investigations into process parameter selection and prototype cell production. Furthermore, emerging process concepts must be developed at lab and pilot scale that reduce production costs and improve cell performance. Here, we present an introductory summary of the state-of-the-art production technologies for automotive LIBs. We then discuss the key relationships between process, quality and performance, as well as explore the impact of materials and processes on scale and cost. Finally, future developments and innovations that aim to overcome the main challenges are presented. The battery manufacturing process significantly affects battery performance. This Review provides an introductory overview of production technologies for automotive batteries and discusses the importance of understanding relationships between the production process and battery performance.

598 citations


Journal ArticleDOI
TL;DR: The first crystal structure of the C-terminal adhesion domain of InvD revealed a distinct Ig-related fold that, apart from the canonical β-sheets, comprises various modifications of and insertions into the Ig-core structure, suggesting that InvD modulates Ig functions in the intestine and affects direct interactions with a subset of cell surface-exposed B-cell receptors.

497 citations


Journal ArticleDOI
TL;DR: A multi-laboratory study finds that single-molecule FRET is a reproducible and reliable approach for determining accurate distances in dye-labeled DNA duplexes.
Abstract: Single-molecule Forster resonance energy transfer (smFRET) is increasingly being used to determine distances, structures, and dynamics of biomolecules in vitro and in vivo. However, generalized protocols and FRET standards to ensure the reproducibility and accuracy of measurements of FRET efficiencies are currently lacking. Here we report the results of a comparative blind study in which 20 labs determined the FRET efficiencies (E) of several dye-labeled DNA duplexes. Using a unified, straightforward method, we obtained FRET efficiencies with s.d. between ±0.02 and ±0.05. We suggest experimental and computational procedures for converting FRET efficiencies into accurate distances, and discuss potential uncertainties in the experiment and the modeling. Our quantitative assessment of the reproducibility of intensity-based smFRET measurements and a unified correction procedure represents an important step toward the validation of distance networks, with the ultimate aim of achieving reliable structural models of biomolecular systems by smFRET-based hybrid methods.

318 citations


Proceedings ArticleDOI
13 Mar 2018
TL;DR: In this paper, a parametric body model is used to estimate 3D shape, texture and implanted animation skeleton from a single RGB camera video in which a person is moving, and a robust processing pipeline is presented to infer 3D model shapes including clothed people with 4.5mm reconstruction accuracy.
Abstract: This paper describes a method to obtain accurate 3D body models and texture of arbitrary people from a single, monocular video in which a person is moving. Based on a parametric body model, we present a robust processing pipeline to infer 3D model shapes including clothed people with 4.5mm reconstruction accuracy. At the core of our approach is the transformation of dynamic body pose into a canonical frame of reference. Our main contribution is a method to transform the silhouette cones corresponding to dynamic human silhouettes to obtain a visual hull in a common reference frame. This enables efficient estimation of a consensus 3D shape, texture and implanted animation skeleton based on a large number of frames. Results on 4 different datasets demonstrate the effectiveness of our approach to produce accurate 3D models. Requiring only an RGB camera, our method enables everyone to create their own fully animatable digital double, e.g., for social VR applications or virtual try-on for online fashion shopping.

280 citations


Journal ArticleDOI
TL;DR: In this article, a comprehensive approach to calculate the sustainability performance of bio-based plastics on a global scale was proposed, based on available data from LCA, social life cycle assessment (S-LCA), and life cycle costing (LCC) studies on Bio-Based Plastics.

266 citations


Journal ArticleDOI
TL;DR: The notion that halide perovskite crystals (ABX3) exhibit unique structural and optoelectronic behavior deserves serious scrutiny, and the question which attributes of these materials are unusual, is discussed, with an emphasis on the identification of the most important remaining issues.
Abstract: The notion that halide perovskite crystals (ABX(3), where X is a halide) exhibit unique structural and optoelectronic behavior deserves serious scrutiny. After decades of steady and half a decade of intense research, the question which attributes of these materials are unusual, is discussed, with an emphasis on the identification of the most important remaining issues. The goal is to stimulate discussion rather than to merely present a community consensus.

245 citations


Posted Content
TL;DR: This paper describes a method to obtain accurate 3D body models and texture of arbitrary people from a single, monocular video in which a person is moving and presents a robust processing pipeline to infer 3D model shapes including clothed people with 4.5mm reconstruction accuracy.
Abstract: This paper describes how to obtain accurate 3D body models and texture of arbitrary people from a single, monocular video in which a person is moving. Based on a parametric body model, we present a robust processing pipeline achieving 3D model fits with 5mm accuracy also for clothed people. Our main contribution is a method to nonrigidly deform the silhouette cones corresponding to the dynamic human silhouettes, resulting in a visual hull in a common reference frame that enables surface reconstruction. This enables efficient estimation of a consensus 3D shape, texture and implanted animation skeleton based on a large number of frames. We present evaluation results for a number of test subjects and analyze overall performance. Requiring only a smartphone or webcam, our method enables everyone to create their own fully animatable digital double, e.g., for social VR applications or virtual try-on for online fashion shopping.

240 citations


Proceedings ArticleDOI
26 Jun 2018
TL;DR: In this paper, the authors discuss requirements for the representation of scenarios in different process steps defined by the ISO 26262 standard, propose a consistent terminology based on prior publications for the identified levels of abstraction, and demonstrate how scenarios can be systematically evolved along the phases of the development process outlined in the ISO26262 standard.
Abstract: The latest version of the ISO 26262 standard from 2016 represents the state of the art for a safety-guided development of safety-critical electric/electronic vehicle systems. These vehicle systems include advanced driver assistance systems and vehicle guidance systems. The development process proposed in the ISO 26262 standard is based upon multiple V-models, and defines activities and work products for each process step. In many of these process steps, scenario based approaches can be applied to achieve the defined work products for the development of automated driving functions. To accomplish the work products of different process steps, scenarios have to focus on various aspects like a human understandable notation or a description via state variables. This leads to contradictory requirements regarding the level of detail and way of notation for the representation of scenarios. In this paper, the authors discuss requirements for the representation of scenarios in different process steps defined by the ISO 26262 standard, propose a consistent terminology based on prior publications for the identified levels of abstraction, and demonstrate how scenarios can be systematically evolved along the phases of the development process outlined in the ISO 26262 standard.

233 citations


Journal ArticleDOI
TL;DR: In this article, a total of 20 different soil organic carbon fractionation methods were tested by participating laboratories for their suitability to isolate fractions with varying turnover rates, using agricultural soils from three experimental sites with vegetation change from C3 to C4 22-36 years ago.
Abstract: Fractionation of soil organic carbon (SOC) is crucial for mechanistic understanding and modeling of soil organic matter decomposition and stabilization processes. It is often aimed at separating the bulk SOC into fractions with varying turnover rates, but a comprehensive comparison of methods to achieve this is lacking. In this study, a total of 20 different SOC fractionation methods were tested by participating laboratories for their suitability to isolate fractions with varying turnover rates, using agricultural soils from three experimental sites with vegetation change from C3 to C4 22–36 years ago. Enrichment of C4-derived carbon was traced and used as a proxy for turnover rates in the fractions. Methods that apply a combination of physical (density, size) and chemical (oxidation, extraction) fractionation were identified as most effective in separating SOC into fractions with distinct turnover rates. Coarse light SOC separated by density fractionation was the most C4-carbon enriched fraction, while oxidation-resistant SOC left after extraction with NaOCl was the least C4-carbon enriched fraction. Surprisingly, even after 36 years of C4 crop cultivation in a temperate climate, no method was able to isolate a fraction with more than 76% turnover, which challenges the link to the most active plant-derived carbon pools in models. Particles with density >2.8 g cm−3 showed similar C4-carbon enrichment as oxidation-resistant SOC, highlighting the importance of sesquioxides for SOC stabilization. The importance of clay and silt-sized particles (

Journal ArticleDOI
TL;DR: In this article, the authors review the mathematical foundations of model averaging along with the diversity of approaches available and stress the importance of non-parametric methods such as cross-validation for a reliable uncertainty quantification of model-averaged predictions.
Abstract: In ecology, the true causal structure for a given problem is often not known, and several plausible models and thus model predictions exist. It has been claimed that using weighted averages of these models can reduce prediction error, as well as better reflect model selection uncertainty. These claims, however, are often demonstrated by isolated examples. Analysts must better understand under which conditions model averaging can improve predictions and their uncertainty estimates. Moreover, a large range of different model averaging methods exists, raising the question of how they differ in their behaviour and performance. Here, we review the mathematical foundations of model averaging along with the diversity of approaches available. We explain that the error in model‐averaged predictions depends on each model's predictive bias and variance, as well as the covariance in predictions between models, and uncertainty about model weights. We show that model averaging is particularly useful if the predictive error of contributing model predictions is dominated by variance, and if the covariance between models is low. For noisy data, which predominate in ecology, these conditions will often be met. Many different methods to derive averaging weights exist, from Bayesian over information‐theoretical to cross‐validation optimized and resampling approaches. A general recommendation is difficult, because the performance of methods is often context dependent. Importantly, estimating weights creates some additional uncertainty. As a result, estimated model weights may not always outperform arbitrary fixed weights, such as equal weights for all models. When averaging a set of models with many inadequate models, however, estimating model weights will typically be superior to equal weights. We also investigate the quality of the confidence intervals calculated for model‐averaged predictions, showing that they differ greatly in behaviour and seldom manage to achieve nominal coverage. Our overall recommendations stress the importance of non‐parametric methods such as cross‐validation for a reliable uncertainty quantification of model‐averaged predictions.

Journal ArticleDOI
TL;DR: In this paper, a set of definitions and a typology for ecosystem functions are proposed to improve communication between ecologists, land and marine managers, remote sensing specialists and policy makers, thereby addressing a major barrier in the field.
Abstract: Societal, economic and scientific interests in knowing where biodiversity is, how it is faring and what can be done to efficiently mitigate further biodiversity loss and the associated loss of ecosystem services are at an all-time high. So far, however, biodiversity monitoring has primarily focused on structural and compositional features of ecosystems despite growing evidence that ecosystem functions are key to elucidating the mechanisms through which biological diversity generates services to humanity. This monitoring gap can be traced to the current lack of consensus on what exactly ecosystem functions are and how to track them at scales beyond the site level. This contribution aims to advance the development of a global biodiversity monitoring strategy by proposing the adoption of a set of definitions and a typology for ecosystem functions, and reviewing current opportunities and potential limitations for satellite remote sensing technology to support the monitoring of ecosystem functions worldwide. By clearly defining ecosystem processes, functions and services and their interrelationships, we provide a framework to improve communication between ecologists, land and marine managers, remote sensing specialists and policy makers, thereby addressing a major barrier in the field.

Journal ArticleDOI
TL;DR: This Perspective highlights the capability of the DNA origami technique for realization of novel nanophotonic systems with tailored functionalities and reviews recent advances of theDNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems.
Abstract: The specificity and simplicity of the Watson–Crick base pair interactions make DNA one of the most versatile construction materials for creating nanoscale structures and devices. Among several DNA-based approaches, the DNA origami technique excels in programmable self-assembly of complex, arbitrary shaped structures with dimensions of hundreds of nanometers. Importantly, DNA origami can be used as templates for assembly of functional nanoscale components into three-dimensional structures with high precision and controlled stoichiometry. This is often beyond the reach of other nanofabrication techniques. In this Perspective, we highlight the capability of the DNA origami technique for realization of novel nanophotonic systems. First, we introduce the basic principles of designing and fabrication of DNA origami structures. Subsequently, we review recent advances of the DNA origami applications in nanoplasmonics, single-molecule and super-resolution fluorescent imaging, as well as hybrid photonic systems. We...

Journal ArticleDOI
TL;DR: X-ray data taken from the solid state structures of dimethyl- and diphenyl-dichalcogenides as well as oligoalkynes kept by alkyl-sulfur, -selenium, and -tellurium groups is presented and the results of quantum chemical calculations are discussed.
Abstract: This review considers noncovalent bonds between divalent chalcogen centers. In the first part we present X-ray data taken from the solid state structures of dimethyl- and diphenyl-dichalcogenides as well as oligoalkynes kept by alkyl-sulfur, -selenium, and -tellurium groups. Furthermore, we analyzed the solid state structures of medium sized (12–24 ring size) selenium coronands and medium to large rings with alkyne and alkene units between two chalcogen centers. The crystal structures of the cyclic structures revealed columnar stacks with close contacts between neighboring rings via noncovalent interactions between the chalcogen centers. To get larger space within the cavities, rings with diyne units between the chalcogen centers were used. These molecules showed channel-like structures in the solid state. The flexibility of the rings permits inclusion of guest molecules such as five-membered heterocycles and aromatic six-membered rings. In the second part we discuss the results of quantum chemical calcul...

Journal ArticleDOI
TL;DR: It is shown that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution, and an increased density of states in theband gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift.
Abstract: Intrinsic organic–inorganic metal halide perovskites (OIHP) based semiconductors have shown wide applications in optoelectronic devices. There have been several attempts to incorporate heterovalent metal (e.g., Bi3+) ions in the perovskites in an attempt to induce electronic doping and increase the charge carrier density in the semiconductor. It has been reported that inclusion of Bi3+ decreases the band gap of the material considerably. However, contrary to the earlier conclusions, despite a clear change in the appearance of the crystal as observed by eye, here we show that the band gap of MAPbBr3 crystals does not change due the presence of Bi3+ in the growth solution. An increased density of states in the band gap and use of very thick samples for transmission measurements, erroneously give the impression of a band gap shift. These sub band gap states also act as nonradiative recombination centers in the crystals.

Journal ArticleDOI
TL;DR: The highly unusual low-temperature heat conductivity κ of α-RuCl_{3}, a prime candidate for realizing such physics, is unveiled: beyond a magnetic field of B_{c}≈7.5 T, κ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport.
Abstract: The honeycomb Kitaev-Heisenberg model is a source of a quantum spin liquid with Majorana fermions and gauge flux excitations as fractional quasiparticles. Here we unveil the highly unusual low-temperature heat conductivity $\ensuremath{\kappa}$ of $\ensuremath{\alpha}\text{\ensuremath{-}}{\mathrm{RuCl}}_{3}$, a prime candidate for realizing such physics: beyond a magnetic field of ${B}_{c}\ensuremath{\approx}7.5\text{ }\text{ }\mathrm{T}$, $\ensuremath{\kappa}$ increases by about one order of magnitude, both for in-plane as well as out-of-plane transport. This clarifies the unusual magnetic field dependence unambiguously to be the result of severe scattering of phonons off putative Kitaev-Heisenberg excitations in combination with a drastic field-induced change of the magnetic excitation spectrum. In particular, an unexpected, large energy gap arises, which increases linearly with the magnetic field, reaching remarkable $\ensuremath{\hbar}{\ensuremath{\omega}}_{0}/{k}_{B}\ensuremath{\approx}50\text{ }\text{ }\mathrm{K}$ at 18 T.

Proceedings ArticleDOI
26 Jun 2018
TL;DR: In this article, the authors present an ontologies as knowledge-based systems in the field of automated vehicles, and propose a generation of traffic scenes in natural language as a basis for a scenario creation.
Abstract: The introduction of automated vehicles without permanent human supervision demands a functional system description, including functional system boundaries and a comprehensive safety analysis. These inputs to the technical development can be identified and analyzed by a scenario-based approach. Furthermore, to establish an economical test and release process, a large number of scenarios must be identified to obtain meaningful test results. Experts are doing well to identify scenarios that are difficult to handle or unlikely to happen. However, experts are unlikely to identify all scenarios possible based on the knowledge they have on hand. Expert knowledge modeled for computer aided processing may help for the purpose of providing a wide range of scenarios. This contribution reviews ontologies as knowledge-based systems in the field of automated vehicles, and proposes a generation of traffic scenes in natural language as a basis for a scenario creation.

Proceedings ArticleDOI
01 Sep 2018
TL;DR: This paper contributes facial landmark and shading-based human body shape refinement, a semantic texture prior, and a novel texture stitching strategy, resulting in the most sophisticated-looking human avatars obtained from a single video to date.
Abstract: We present a novel method for high detail-preserving human avatar creation from monocular video. A parameterized body model is refined and optimized to maximally resemble subjects from a video showing them from all sides. Our avatars feature a natural face, hairstyle, clothes with garment wrinkles, and high-resolution texture. Our paper contributes facial landmark and shading-based human body shape refinement, a semantic texture prior, and a novel texture stitching strategy, resulting in the most sophisticated-looking human avatars obtained from a single video to date. Numerous results show the robustness and versatility of our method. A user study illustrates its superiority over the state-of-the-art in terms of identity preservation, level of detail, realism, and overall user preference.

Journal ArticleDOI
TL;DR: A rapid and automated methodology for characterizing new DNA parts from a nonmodel bacterium using cell-free transcription–translation using Bayesian parameter inference and a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions is presented.
Abstract: Native cell-free transcription–translation systems offer a rapid route to characterize the regulatory elements (promoters, transcription factors) for gene expression from nonmodel microbial hosts, which can be difficult to assess through traditional in vivo approaches. One such host, Bacillus megaterium, is a giant Gram-positive bacterium with potential biotechnology applications, although many of its regulatory elements remain uncharacterized. Here, we have developed a rapid automated platform for measuring and modeling in vitro cell-free reactions and have applied this to B. megaterium to quantify a range of ribosome binding site variants and previously uncharacterized endogenous constitutive and inducible promoters. To provide quantitative models for cell-free systems, we have also applied a Bayesian approach to infer ordinary differential equation model parameters by simultaneously using time-course data from multiple experimental conditions. Using this modeling framework, we were able to infer previously unknown transcription factor binding affinities and quantify the sharing of cell-free transcription–translation resources (energy, ribosomes, RNA polymerases, nucleotides, and amino acids) using a promoter competition experiment. This allows insights into resource limiting-factors in batch cell-free synthesis mode. Our combined automated and modeling platform allows for the rapid acquisition and model-based analysis of cell-free transcription–translation data from uncharacterized microbial cell hosts, as well as resource competition within cell-free systems, which potentially can be applied to a range of cell-free synthetic biology and biotechnology applications.

Journal ArticleDOI
TL;DR: In this article, the Fourier transform infrared spectroscopy (FTIR) analysis was carried out using an integration method which considers the area below the absorbance spectrum around a band maximum using baseline and tangential approaches.
Abstract: This RILEM round robin study with nine participating laboratories investigated bitumen ageing, its effect on chemical properties and its reproducibility. The impact of temperature used for short-term (RTFOT) binder ageing on the combined short- and long-term (PAV) aged samples was investigated; thereby the effect of reduced mixing temperature such as those relevant for warm mix asphalt technologies on long term ageing was examined. Four 70/100 penetration graded bituminous binders from different sources were selected. In addition to the standard RTFOT temperature of 163 °C, two additional temperatures, 143 and 123 °C were used. The Fourier transform infrared spectroscopy (FTIR) analysis was carried out using an integration method which considers the area below the absorbance spectrum around a band maximum using baseline and tangential approaches. A statistical investigation into the reproducibility of FTIR spectra analysis based on the accumulated data was done. To assess the reproducibility, the coefficient of variation (CV) was taken as a benchmark parameter. Carbonyl and sulfoxide indices were calculated using different baseline correction methods and tangential and baseline integration, respectively. It was shown that the tangential method was not influenced by the applied baseline correction. However, in all considered cases, the tangential method led to significantly worse reproducibility (CVs ranging from 20 to 120%) compared to the baseline method. The sulfoxide indices calculated by both methods were not affected by the baseline correction method used. Impacts of changes in the short-term ageing temperature on short- or long-term aged samples could not be found whereas differences between different binder sources could be detected. RTFOT temperature and therefore mix production temperature had a stronger impact on the formation of sulfoxide structures than for carbonyl structures. The findings from this study show the most reproducible of all considered methods when more than one laboratory is providing FTIR data.

Journal ArticleDOI
01 Dec 2018-Networks
TL;DR: This paper analyze how drones can be combined with regular delivery vehicles to improve same-day delivery performance and reveals that geographical districting is highly effective increasing the expected number of sameday deliveries and a combination of drone and vehicle fleets may reduce routing costs significantly.
Abstract: In this paper, we analyze how drones can be combined with regular delivery vehicles to improve same-day delivery performance. To this end, we present a dynamic vehicle routing problem with heterogeneous fleets. Customers order goods over the course of the day. These goods are delivered either by a drone or by a regular transportation vehicle within a delivery deadline. Drones are faster but have a limited capacity as well as charging times. Vehicles capacities are unlimited but vehicles are slow due to urban traffic. To decide whether an order is delivered by a drone or by a vehicle, we present a policy function approximation based on geographical districting. Our computational study reveals two major implications: First, geographical districting is highly effective increasing the expected number of sameday deliveries. Second, a combination of drone and vehicle fleets may reduce routing costs significantly.

Journal ArticleDOI
TL;DR: Evidence is provided that neuroinflammation induced by neurotropic H7N7 and infection of the lung with a non-neurotropic H3N2 IAV result in long-term impairments in the CNS, indicating that IAV-associated inflammation induced functional and structural alterations in hippocampal networks.
Abstract: Acute influenza infection has been reported to be associated with neurological symptoms. However, the long-term consequences for the CNS of an infection with neurotropic but also with non-neurotropic influenza A virus (IAV) variants remain elusive. We can show that spine loss in the hippocampus after infection with neurotropic H7N7 (rSC35M) as well as non-neurotropic H3N2 (maHK68) in female C57BL/6 mice persists well beyond the acute phase of the disease. While spine number was significantly reduced 30 days post infection (pi) with H7N7 or H3N2, full recovery could only be observed much later at 120 days pi. Notably, infection with H1N1 virus which was shown previously to acutely affect spine number and hippocampus-dependent learning had no significant long-term effects. Spine loss was associated with an increase in the number of activated microglia, reduced long-term potentiation in the hippocampus, and an impairment in spatial memory formation indicating that IAV associated inflammation induced functional and structural alterations in hippocampal networks. Transcriptome analyses revealed regulation of many inflammatory as well as neuron- and glia-specific genes in H3N2 and H7N7 infected mice at day 18 and in H7N7 infected mice at day 30 pi that related to the structural and functional alterations. Our data provide evidence that neuroinflammation induced by neurotropic H7N7 and infection of the lung with a non-neurotropic H3N2 IAV result in long-term impairments in the CNS. IAV infection in humans may therefore not only lead to short-term responses in infected organs but also trigger neuroinflammation and associated chronic alterations in the CNS. Significance statement In the acute phase of influenza infection, neuroinflammation can lead to alterations in hippocampal neuronal morphology as well as cognitive deficits. The results of this study now also provide evidence that neuroinflammation induced by IAV infection can induce longer lasting virus-specific alterations in neuronal connectivity detectable still one month after infection which are associated with impairments in spatial memory formation. IAV infection in humans may therefore not only lead to short-term responses in infected organs but also trigger neuroinflammation and associated chronic alterations in the CNS.

Journal ArticleDOI
TL;DR: In this paper, the feasibility of using two types of nanoparticle additives in water-based drilling fluid has been investigated, and the results showed that the addition of clay and SiO2 nanoparticles improved the rheological and fluid loss properties.

Journal ArticleDOI
TL;DR: The first direct in situ measurements of the existence and shape of large wind farm wakes by a specially equipped research aircraft in 2016 and 2017 confirm wake lengths of more than tens of kilometres under stable atmospheric conditions, with maximum wind speed deficits of 40%, and enhanced turbulence.
Abstract: More than 12 GW of offshore wind turbines are currently in operation in European waters. To optimise the use of the marine areas, wind farms are typically clustered in units of several hundred turbines. Understanding wakes of wind farms, which is the region of momentum and energy deficit downwind, is important for optimising the wind farm layouts and operation to minimize costs. While in most weather situations (unstable atmospheric stratification), the wakes of wind turbines are only a local effect within the wind farm, satellite imagery reveals wind-farm wakes to be several tens of kilometres in length under certain conditions (stable atmospheric stratification), which is also predicted by numerical models. The first direct in situ measurements of the existence and shape of large wind farm wakes by a specially equipped research aircraft in 2016 and 2017 confirm wake lengths of more than tens of kilometres under stable atmospheric conditions, with maximum wind speed deficits of 40%, and enhanced turbulence. These measurements were the first step in a large research project to describe and understand the physics of large offshore wakes using direct measurements, together with the assessment of satellite imagery and models.

Journal ArticleDOI
TL;DR: This study proposes a viable paradigm for realizing the realistic HST channels at the 5G mmWave band, and reconstructs the three-dimensional mmWave outdoor HST and tunnel scenario models.
Abstract: The upcoming fifth-generation (5G) mobile communication system is expected to support high mobility up to 500 km/h, which is envisioned in particular for high-speed trains. Millimeter wave (mmWave) spectrum is considered as a key enabler for offering the “best experience” to highly mobile users. Despite that channel characterization is necessary for the mmWave system design and validation, it is still not feasible to directly do extensive mmWave mobile channel measurements on moving high-speed trains (HST) at a speed up to 500 km/h in the present. Thus, rather than conducting mmWave HST channel sounding directly with high mobility, this study proposes a viable paradigm for realizing the realistic HST channels at the 5G mmWave band. We first propose the whole paradigm. Then, we define the scenario of interest and select the main objects and materials. Afterwards, the electromagnetic and scattering parameters of the materials are measured and estimated between 26.5 GHz and 40 GHz. With this information, the most influential materials are determined through significance analysis. Correspondingly, we reconstruct the three-dimensional mmWave outdoor HST and tunnel scenario models. Through extensive ray-tracing simulations, we determine the main propagation mechanisms in these two scenarios, the channel models based on that are validated by measurements. This verifies the whole paradigm proposed in this paper.

Journal ArticleDOI
TL;DR: The reproducible and highly controllable synthesis of monodisperse branched gold nanoparticles in a droplet-based microfluidics platform is reported, proving the potential of this technology for the continuous synthesis of high quality anisotropic NPs with improved reproducibility.
Abstract: The synthesis of anisotropic metallic nanoparticles (NPs) has been a field of intense and challenging research in the past decade. In this communication, we report on the reproducible and highly controllable synthesis of monodisperse branched gold nanoparticles in a droplet-based microfluidics platform. The process has been automated by adapting two different bulk synthetic strategies to microdroplets, acting as microreactors, for NP synthesis: a surfactant-free synthesis and a surfactant-assisted synthesis. Microdroplets were generated in two different microfluidic devices designed to accommodate the requirements of both bulk syntheses. The epitaxial growth of AuNSTs inside the microdroplets allowed for a fine control of reagent mixing and local concentrations during particle formation. This is the first time branched gold NPs have been synthesised in a microfluidics platform. The monodispersity of the product was comparable to the synthesis in bulk, proving the potential of this technology for the continuous synthesis of high quality anisotropic NPs with improved reproducibility.

Journal ArticleDOI
TL;DR: A sequence of ultrafast optical pulses is used to directly compare the intraband cooling dynamics in five common LHPs and assert the thermodynamic contribution of a symmetry-breaking organic cation toward rapid HC cooling, strongest in the all-inorganic Cs-based system.
Abstract: The rapid relaxation of above-band-gap “hot” carriers (HCs) imposes the key efficiency limit in lead-halide perovskite (LHP) solar cells. Recent studies have indicated that HC cooling in these syst...

Journal ArticleDOI
TL;DR: In this paper, a variational fatigue phase-field model is proposed, where the fracture energy decreases as a suitably defined accumulated strain measure increases, which is obtained by introducing a dissipation potential which explicitly depends on the strain history.

Journal ArticleDOI
TL;DR: In this article, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers are investigated, in depth, and the extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions.
Abstract: We investigated, in depth, the interrelations among structure, magnetic properties, relaxation dynamics and magnetic hyperthermia performance of magnetic nanoflowers. The nanoflowers are about 39 nm in size, and consist of densely packed iron oxide cores. They display a remanent magnetization, which we explain by the exchange coupling between the cores, but we observe indications for internal spin disorder. By polarized small-angle neutron scattering, we unambiguously confirm that, on average, the nanoflowers are preferentially magnetized along one direction. The extracted discrete relaxation time distribution of the colloidally dispersed particles indicates the presence of three distinct relaxation contributions. We can explain the two slower processes by Brownian and classical Neel relaxation, respectively. The additionally observed very fast relaxation contributions are attributed by us to the relaxation of disordered spins within the nanoflowers. Finally, we show that the intrinsic loss power (ILP, ma...