scispace - formally typeset
Search or ask a question

Showing papers by "Braunschweig University of Technology published in 2015"


Journal ArticleDOI
TL;DR: In this article, the authors provide an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities, and propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem.
Abstract: In this contribution we address the issue of efficient finite element treatment for phase-field modeling of brittle fracture. We start by providing an overview of the existing quasi-static and dynamic phase-field fracture formulations from the physics and the mechanics communities. Within the formulations stemming from Griffith's theory, we focus on quasi-static models featuring a tension-compression split, which prevent cracking in compression and interpenetration of the crack faces upon closure, and on the staggered algorithmic implementation due to its proved robustness. In this paper, we establish an appropriate stopping criterion for the staggered scheme. Moreover, we propose and test the so-called hybrid formulation, which leads within a staggered implementation to an incrementally linear problem. This enables a significant reduction of computational cost--about one order of magnitude--with respect to the available (non-linear) models. The conceptual and structural similarities of the hybrid formulation to gradient-enhanced continuum damage mechanics are outlined as well. Several benchmark problems are solved, including one with own experimental verification.

880 citations


Journal ArticleDOI
TL;DR: In this article, a phase-field model for ductile fracture of elasto-plastic solids in the quasi-static kinematically linear regime is proposed, which captures the entire range of behavior of a ductile material exhibiting $$J_2$$J2-PLasticity, encompassing plasticization, crack initiation, propagation and failure.
Abstract: Phase-field modeling of brittle fracture in elastic solids is a well-established framework that overcomes the limitations of the classical Griffith theory in the prediction of crack nucleation and in the identification of complicated crack paths including branching and merging. We propose a novel phase-field model for ductile fracture of elasto-plastic solids in the quasi-static kinematically linear regime. The formulation is shown to capture the entire range of behavior of a ductile material exhibiting $$J_2$$J2-plasticity, encompassing plasticization, crack initiation, propagation and failure. Several examples demonstrate the ability of the model to reproduce some important phenomenological features of ductile fracture as reported in the experimental literature.

522 citations



Journal ArticleDOI
23 Jan 2015-Science
TL;DR: Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck, which raises the question of whether the two Lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.
Abstract: Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

421 citations


Journal ArticleDOI
Alessandra Rotundi1, Alessandra Rotundi2, Holger Sierks3, Vincenzo Della Corte1, Marco Fulle1, Pedro J. Gutiérrez4, Luisa Lara4, Cesare Barbieri, Philippe Lamy5, Rafael Rodrigo6, Rafael Rodrigo4, Detlef Koschny7, Hans Rickman8, Hans Rickman9, H. U. Keller10, José Juan López-Moreno4, Mario Accolla1, Mario Accolla2, Jessica Agarwal3, Michael F. A'Hearn11, Nicolas Altobelli7, Francesco Angrilli12, M. Antonietta Barucci13, Jean-Loup Bertaux14, Ivano Bertini12, Dennis Bodewits11, E. Bussoletti2, Luigi Colangeli15, M. Cosi16, Gabriele Cremonese1, Jean-François Crifo14, Vania Da Deppo, Björn Davidsson8, Stefano Debei12, Mariolino De Cecco17, Francesca Esposito1, M. Ferrari2, M. Ferrari1, Sonia Fornasier13, F. Giovane18, Bo Å. S. Gustafson19, Simon F. Green20, Olivier Groussin5, Eberhard Grün3, Carsten Güttler3, M. Herranz4, Stubbe F. Hviid21, Wing Ip22, Stavro Ivanovski1, José M. Jerónimo4, Laurent Jorda5, J. Knollenberg21, R. Kramm3, Ekkehard Kührt21, Michael Küppers7, Monica Lazzarin, Mark Leese20, Antonio C. López-Jiménez4, F. Lucarelli2, Stephen C. Lowry23, Francesco Marzari12, Elena Mazzotta Epifani1, J. Anthony M. McDonnell23, J. Anthony M. McDonnell20, Vito Mennella1, Harald Michalik, A. Molina24, R. Morales4, Fernando Moreno4, Stefano Mottola21, Giampiero Naletto, Nilda Oklay3, Jose Luis Ortiz4, Ernesto Palomba1, Pasquale Palumbo1, Pasquale Palumbo2, Jean-Marie Perrin25, Jean-Marie Perrin14, J. E. Rodriguez4, L. Sabau26, Colin Snodgrass20, Colin Snodgrass3, Roberto Sordini1, Nicolas Thomas27, Cecilia Tubiana3, Jean-Baptiste Vincent3, Paul R. Weissman28, K. P. Wenzel7, Vladimir Zakharov13, John C. Zarnecki6, John C. Zarnecki20 
23 Jan 2015-Science
TL;DR: In this article, the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko was used to detect 35 outflowing grains of mass 10−10 to 10−7 kilograms.
Abstract: Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency’s Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10−10 to 10−7 kilograms, and 48 grains of mass 10−5 to 10−2 kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

373 citations


Journal ArticleDOI
TL;DR: In this article, the authors introduce a classification of technologies based on interfacing microbiology and electrochemistry and argue that BESs comprise all systems based on bioelectrochemistry, with a further layer of termini through the use of METs.
Abstract: Microbial electrochemistry is the study and application of interactions between living microbial cells and electrodes (i.e. electron conductors, capacitive materials). For a long time this subfield of bioelectrochemistry has been the interest of mainly fundamental researchers. This has considerably changed during the last decade and microbial electrochemistry gained interest from applied researchers and engineers. These researchers took the microbial fuel cell (MFC), which is a system that converts the chemical energy of organic material in wastewater into electric power, from a concept to a technology. In addition, a plethora of derivative technologies, such as microbial electrolysis cells (MECs), microbial desalination cells (MDCs), photomicrobial fuel cells (photoMFCs), microbial electrosynthesis (MES), and biocomputing have been developed. The growing number of systems is often referred to in literature under the termini bioelectrochemical system (BES), microbial electrochemical technology (MET), or electrobiotechnology. Within this article we introduce a classification of technologies based on interfacing microbiology and electrochemistry. We argue that BESs comprise all systems based on bioelectrochemistry, with a further layer of termini through the use of METs. Primary METs are based on extracellular electron transfer (direct or mediated), whereas secondary METs include systems in which electrochemistry is connected – at least through ionic contact – with a microbial process via the electrochemical control or adaptation of environmental parameters, such as pH or metabolite concentration level.

368 citations


Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive analysis of direct digital manufacturing from different perspectives in comparison to various traditional manufacturing paradigms, using a societal viewpoint to see, describe and analyse the subject instead of traditional manufacturing viewpoint.

345 citations


Journal ArticleDOI
TL;DR: This work uses ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice and reveals two characteristic time constants of motion.
Abstract: The introduction of a mobile and polarized organic moiety as a cation in 3D lead-iodide perovskites brings fascinating optoelectronic properties to these materials. The extent and the time scales of the orientational mobility of the organic cation and the molecular mechanism behind its motion remain unclear, with different experimental and computational approaches providing very different qualitative and quantitative description of the molecular dynamics. Here we use ultrafast 2D vibrational spectroscopy of methylammonium (MA) lead iodide to directly resolve the rotation of the organic cations within the MAPbI3 lattice. Our results reveal two characteristic time constants of motion. Using ab initio molecular dynamics simulations, we identify these as a fast (∼300 fs) “wobbling-in-a-cone” motion around the crystal axis and a relatively slow (∼3 ps) jump-like reorientation of the molecular dipole with respect to the iodide lattice. The observed dynamics are essential for understanding the electronic propert...

342 citations


Journal ArticleDOI
TL;DR: In this article, the double focus mass spectrometer (DFMS) of the ROSINA experiment on ESA's Rosetta mission was used to determine relative abundances of major and minor volatile species.
Abstract: The ESA Rosetta spacecraft (S/C) is tracking comet 67P/Churyumov-Gerasimenko in close vicinity. This prolonged en- counter enables studying the evolution of the volatile coma composition. Aims. Our work aims at comparing the diversity of the coma of 67P/Churyumov-Gerasimenko at large heliocentric distance to study the evolution of the comet during its passage around the Sun and at trying to classify it relative to other comets. Methods. We used the Double Focussing Mass Spectrometer (DFMS) of the ROSINA experiment on ESA’s Rosetta mission to determine relative abundances of major and minor volatile species. This study is restricted to species that have previously been detected elsewhere. Results. We detect almost all species currently known to be present in cometary coma with ROSINA DFMS. As DFMS measured the composition locally, we cannot derive a global abundance, but we compare measurements from the summer and the winter hemisphere with known abundances from other comets. Differences between relative abundances between summer and winter hemispheres are large, which points to a possible evolution of the cometary surface. This comet appears to be very rich in CO2 and ethane. Heavy oxygenated compounds such as ethylene glycol are underabundant at 3 AU, probably due to their high sublimation temperatures, but nevertheless, their presence proves that Kuiper belt comets also contain complex organic molecules.

340 citations


Journal ArticleDOI
TL;DR: The range of possible Ebola virus sources is expanded to include insectivorous bats and the importance of broader sampling efforts for understanding Ebola virus ecology is reiterated.
Abstract: The severe Ebola virus disease epidemic occurring in West Africa stems from a single zoonotic transmission event to a 2-year-old boy in Meliandou, Guinea. We investigated the zoonotic origins of the epidemic using wildlife surveys, interviews, and molecular analyses of bat and environmental samples. We found no evidence for a concurrent outbreak in larger wildlife. Exposure to fruit bats is common in the region, but the index case may have been infected by playing in a hollow tree housing a colony of insectivorous free-tailed bats (Mops condylurus). Bats in this family have previously been discussed as potential sources for Ebola virus outbreaks, and experimental data have shown that this species can survive experimental infection. These analyses expand the range of possible Ebola virus sources to include insectivorous bats and reiterate the importance of broader sampling efforts for understanding Ebola virus ecology.

339 citations


Journal ArticleDOI
TL;DR: In this article, a bibliometric citation meta-analysis of consumer brand relationships has been carried out using the ISI Web of Science database, which includes 392 papers by 685 authors in 101 journals.

Journal ArticleDOI
TL;DR: An extended isogeometric element formulation (XIGA) for analysis of through-the-thickness cracks in thin shell structures is developed in this article, where the discretization is based on Non-Uniform Rational B-Splines (NURBS).

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS imaging system onboard the European Space Agency’s Rosetta spacecraft offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.
Abstract: Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency’s Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

Journal ArticleDOI
TL;DR: The usability of the cumulant lattice Boltzmann model is demonstrated by simulations of flow around a sphere for Reynolds numbers from 200 to 105 by the analytically and numerically analyzed and validated model.
Abstract: We propose, analyze, and validate a lattice Boltzmann model with a cumulant collision operator. The new model is analytically and numerically shown to poses smaller errors than a moment based Multiple Relaxation Time lattice Boltzmann model. We demonstrate the usability of the cumulant lattice Boltzmann model by simulations of flow around a sphere for Reynolds numbers from 200 to 105.

Journal ArticleDOI
TL;DR: Super-resolution optical microscopy is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms.
Abstract: Far-field optical microscopy using focused light is an important tool in a number of scientific disciplines including chemical, (bio)physical and biomedical research, particularly with respect to the study of living cells and organisms. Unfortunately, the applicability of the optical microscope is limited, since the diffraction of light imposes limitations on the spatial resolution of the image. Consequently the details of, for example, cellular protein distributions, can be visualized only to a certain extent. Fortunately, recent years have witnessed the development of 'super-resolution' far-field optical microscopy (nanoscopy) techniques such as stimulated emission depletion (STED), ground state depletion (GSD), reversible saturated optical (fluorescence) transitions (RESOLFT), photoactivation localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), structured illumination microscopy (SIM) or saturated structured illumination microscopy (SSIM), all in one way or another addressing the problem of the limited spatial resolution of far-field optical microscopy. While SIM achieves a two-fold improvement in spatial resolution compared to conventional optical microscopy, STED, RESOLFT, PALM/STORM, or SSIM have all gone beyond, pushing the limits of optical image resolution to the nanometer scale. Consequently, all super-resolution techniques open new avenues of biomedical research. Because the field is so young, the potential capabilities of different super-resolution microscopy approaches have yet to be fully explored, and uncertainties remain when considering the best choice of methodology. Thus, even for experts, the road to the future is sometimes shrouded in mist. The super-resolution optical microscopy roadmap of Journal of Physics D: Applied Physics addresses this need for clarity. It provides guidance to the outstanding questions through a collection of short review articles from experts in the field, giving a thorough discussion on the concepts underlying super-resolution optical microscopy, the potential of different approaches, the importance of label optimization (such as reversible photoswitchable proteins) and applications in which these methods will have a significant impact.

Journal ArticleDOI
29 Oct 2015-Nature
TL;DR: The observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance, which suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits from remote sensing observations.
Abstract: The composition of the neutral gas comas of most comets is dominated by H2O,CO and CO2, typically comprising as much as 95 per cent of the total gas density1. In addition, cometary comas have been found to contain a rich array of other molecules, including sulfuric compounds and complex hydrocarbons. Molecular oxygen (O2), however, despite its detection on other icy bodies such as the moons of Jupiter and Saturn2,3, has remained undetected in cometary comas. Here we report in situ measurement of O2 in the coma of comet 67P/Churyumov–Gerasimenko, with local abundances ranging from one per cent to ten per cent relative to H2O and with a mean value of 3.8060.85 per cent. Our observations indicate that the O2/H2O ratio is isotropic in the coma and does not change systematically with heliocentric distance. This suggests that primordial O2 was incorporated into the nucleus during the comet’s formation, which is unexpected given the low upper limits from remote sensing observations4. Current Solar System formation models do not predict conditions that would allow this to occur.

Journal ArticleDOI
23 Jan 2015-Science
TL;DR: Rosetta Orbiter Spectrometer for Ion and Neutral Analysis onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation, indicating a complex coma-nucleus relationship.
Abstract: Comets contain the best-preserved material from the beginning of our planetary system. Their nuclei and comae composition reveal clues about physical and chemical conditions during the early solar system when comets formed. ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) onboard the Rosetta spacecraft has measured the coma composition of comet 67P/Churyumov-Gerasimenko with well-sampled time resolution per rotation. Measurements were made over many comet rotation periods and a wide range of latitudes. These measurements show large fluctuations in composition in a heterogeneous coma that has diurnal and possibly seasonal variations in the major outgassing species: water, carbon monoxide, and carbon dioxide. These results indicate a complex coma-nucleus relationship where seasonal variations may be driven by temperature differences just below the comet surface.

Journal ArticleDOI
TL;DR: In this article, the effects of a thermal hydrolysis process (THP) on the solubilization of main organics of sludge, as well as the performance of the followed biochemical methane potential (BMP) tests under mesophilic condition (35°C), were systematically evaluated.

Journal ArticleDOI
31 Jul 2015-Science
TL;DR: The precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, are reported, based on engineering data in conjunction with operational instrument data, which provide information on the mechanical properties of the comet surface.
Abstract: The Philae lander, part of the Rosetta mission to investigate comet 67P/Churyumov-Gerasimenko, was delivered to the cometary surface in November 2014. Here we report the precise circumstances of the multiple landings of Philae, including the bouncing trajectory and rebound parameters, based on engineering data in conjunction with operational instrument data. These data also provide information on the mechanical properties (strength and layering) of the comet surface. The first touchdown site, Agilkia, appears to have a granular soft surface (with a compressive strength of 1 kilopascal) at least ~20 cm thick, possibly on top of a more rigid layer. The final landing site, Abydos, has a hard surface.

Journal ArticleDOI
TL;DR: In this paper, the average anodic current densities of 1.1 mA cm−2 (silver) and 1.5mA cm −2 (copper) are achieved.
Abstract: Copper and silver are antimicrobial metals, on whose surface bacteria do not grow. As our paper demonstrates, this commonly reported antimicrobial property does not apply to electrochemically active, electrode respiring bacteria. These bacteria readily colonize the surface of these metals, forming a highly active biofilm. Average anodic current densities of 1.1 mA cm−2 (silver) and 1.5 mA cm−2 (copper) are achieved – data that are comparable to that of the benchmark material, graphite (1.0 mA cm−2). Beside the above metals, nickel, cobalt, titanium and stainless steel (SUS 304) were systematically studied towards their suitability as anode materials for microbial fuel cells and related bioelectrochemical systems. The bioelectrochemical data are put in relation to physical data of the materials (specific conductivity, standard potential) and to basic economic considerations. It is concluded that especially copper represents a highly promising anode material, suitable for application in high-performance bioelectrochemical systems.

Journal ArticleDOI
TL;DR: In this article, an inertial forward-backward splitting algorithm is proposed to compute a zero of the sum of two monotone operators, with one of the two operators being co-coercive.
Abstract: In this paper, we propose an inertial forward-backward splitting algorithm to compute a zero of the sum of two monotone operators, with one of the two operators being co-coercive. The algorithm is inspired by the accelerated gradient method of Nesterov, but can be applied to a much larger class of problems including convex-concave saddle point problems and general monotone inclusions. We prove convergence of the algorithm in a Hilbert space setting and show that several recently proposed first-order methods can be obtained as special cases of the general algorithm. Numerical results show that the proposed algorithm converges faster than existing methods, while keeping the computational cost of each iteration basically unchanged.

Journal ArticleDOI
10 Apr 2015-Science
TL;DR: Direct measurements of N2 by instruments aboard the Rosetta spacecraft provide clues about the comet’s long history and depletion of molecular nitrogen at levels that are depleted compared to those in the primordial solar system suggests that the comet formed at low-temperature conditions below ~30 kelvin.
Abstract: Molecular nitrogen (N2) is thought to have been the most abundant form of nitrogen in the protosolar nebula. It is the main N-bearing molecule in the atmospheres of Pluto and Triton and probably the main nitrogen reservoir from which the giant planets formed. Yet in comets, often considered the most primitive bodies in the solar system, N2 has not been detected. Here we report the direct in situ measurement of N2 in the Jupiter family comet 67P/Churyumov-Gerasimenko, made by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis mass spectrometer aboard the Rosetta spacecraft. A N2/CO ratio of (5.70 +− 0.66) × 10−3 (2s standard deviation of the sampled mean) corresponds to depletion by a factor of ~25.4 +− 8.9 as compared to the protosolar value. This depletion suggests that cometary grains formed at low-temperature conditions below ~30 kelvin.

Journal ArticleDOI
TL;DR: In this article, an air-jet-separator is used to detach the coating powder from the current collector foils while stressing remaining particulate agglomerates, which can be used to weaken the adhesion between coating and foil.

Journal ArticleDOI
TL;DR: Evidence that halophilic prokayotes can grow down to water activities of <0.755 and extrapolation of growth curves indicated theoretical minima down to 0.611 aw suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.
Abstract: Archaea and Bacteria constitute a majority of life systems on Earth but have long been considered inferior to Eukarya in terms of solute tolerance. Whereas the most halophilic prokaryotes are known for an ability to multiply at saturated NaCl (water activity (aw) 0.755) some xerophilic fungi can germinate, usually at high-sugar concentrations, at values as low as 0.650–0.605 aw. Here, we present evidence that halophilic prokayotes can grow down to water activities of <0.755 for Halanaerobium lacusrosei (0.748), Halobacterium strain 004.1 (0.728), Halobacterium sp. NRC-1 and Halococcus morrhuae (0.717), Haloquadratum walsbyi (0.709), Halococcus salifodinae (0.693), Halobacterium noricense (0.687), Natrinema pallidum (0.681) and haloarchaeal strains GN-2 and GN-5 (0.635 aw). Furthermore, extrapolation of growth curves (prone to giving conservative estimates) indicated theoretical minima down to 0.611 aw for extreme, obligately halophilic Archaea and Bacteria. These were compared with minima for the most solute-tolerant Bacteria in high-sugar (or other non-saline) media (Mycobacterium spp., Tetragenococcus halophilus, Saccharibacter floricola, Staphylococcus aureus and so on) and eukaryotic microbes in saline (Wallemia spp., Basipetospora halophila, Dunaliella spp. and so on) and high-sugar substrates (for example, Xeromyces bisporus, Zygosaccharomyces rouxii, Aspergillus and Eurotium spp.). We also manipulated the balance of chaotropic and kosmotropic stressors for the extreme, xerophilic fungi Aspergillus penicilloides and X. bisporus and, via this approach, their established water-activity limits for mycelial growth (∼0.65) were reduced to 0.640. Furthermore, extrapolations indicated theoretical limits of 0.632 and 0.636 aw for A. penicilloides and X. bisporus, respectively. Collectively, these findings suggest that there is a common water-activity limit that is determined by physicochemical constraints for the three domains of life.

Journal ArticleDOI
TL;DR: The implementation is based on the distribution of continuous-variable Einstein–Podolsky–Rosen entangled light and is one-sided device independent, which means the security of the generated key is independent of any memoryfree attacks on the remote detector.
Abstract: When quantum key distribution is composed with other secure protocols the overall security has to be guaranteed, which adds further security requirements. Here, the authors demonstrate continuous-variable quantum key distribution with composable security and one-sided-device independence.

Journal ArticleDOI
TL;DR: In this paper, the authors analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea.
Abstract: The initiation of tectonic plate subduction into the mantle is poorly understood. If subduction is induced by the push of a distant mid-ocean ridge or subducted slab pull, we expect compression and uplift of the overriding plate. In contrast, spontaneous subduction initiation, driven by subsidence of dense lithosphere along faults adjacent to buoyant lithosphere, would result in extension and magmatism. The rock record of subduction initiation is typically obscured by younger deposits, so evaluating these possibilities has proved elusive. Here we analyse the geochemical characteristics of igneous basement rocks and overlying sediments, sampled from the Amami Sankaku Basin in the northwest Philippine Sea. The uppermost basement rocks are areally widespread and supplied via dykes. They are similar in composition and age—as constrained by the biostratigraphy of the overlying sediments—to the 52–48-million-year-old basalts in the adjacent Izu–Bonin–Mariana fore-arc. The geochemical characteristics of the basement lavas indicate that a component of subducted lithosphere was involved in their genesis, and the lavas were derived from mantle source rocks that were more melt-depleted than those tapped at mid-ocean ridges. We propose that the basement lavas formed during the inception of Izu–Bonin–Mariana subduction in a mode consistent with the spontaneous initiation of subduction.

Journal ArticleDOI
TL;DR: In this article, the authors used stereo-photogrammetric methods (SPG) to analyze the rotational elements of 67P and derived a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3.
Abstract: We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9−2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km3 ± 0.1 km3. With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet’s center-of-mass, we extrapolated this value to an overall volume of 18.7 km3 ± 1.2 km3, and, with a current best estimate of 1.0 × 1013 kg for the mass, we derive a bulk density of 535 kg/m3 ± 35 kg/m3. Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 ± 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14◦, a cone center position at 69.54◦/64.11◦ (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35◦ right-hand-rule eastern longitude and –0.28◦ latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.

Journal ArticleDOI
TL;DR: Wireless coverage based on massive MIMO for railway stations and train cars is proposed to fulfill the requirement of high-data-rate and high spectrum efficiency and the technical challenges brought by the massive M IMO technique are discussed.
Abstract: The future development of the railway is highly desired to evolve into a new era where infrastructure, trains, travelers, and goods will be increasingly interconnected to provide high comfort, with optimized door-to-door mobility at higher safety. For this vision, it is required to realize seamless high data rate wireless connectivity for railways. To improve the safety and comfort of future railways, wireless communications for railways are required to evolve from only voice and traditional train control signaling services to various high data rate services including critical high-definition (HD) video and other more bandwidth-intensive passenger services, such as onboard and wayside HD video surveillance, onboard real-time high data rate services, train multimedia dispatching video streaming, railway mobile ticketing, and the Internet of Things for railways. Corresponding mobile communications network architecture under various railway scenarios including inter-car, intra-car, inside station, train-to-infrastructure and infrastructure- to-infrastructure are proposed in this article. Wireless coverage based on massive MIMO for railway stations and train cars is proposed to fulfill the requirement of high-data-rate and high spectrum efficiency. The technical challenges brought by the massive MIMO technique are discussed as well.

Journal ArticleDOI
TL;DR: In this paper, water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb-I cage and the exposure of CH3NH3PbI3 to the ambient environment increases the photocurrent of films in lateral devices by more than 1 order of magnitude.
Abstract: While the susceptibility of CH3NH3PbI3 to water is well-documented, the influence of water on device performance is not well-understood. Herein, we use infrared spectroscopy to show that water infiltration into CH3NH3PbI3 occurs much faster and at a humidity much lower than previously thought. We propose a molecular model in which water molecules have a strong effect on the hydrogen bonding between the methylammonium cations and the Pb–I cage. Furthermore, the exposure of CH3NH3PbI3 to the ambient environment increases the photocurrent of films in lateral devices by more than 1 order of magnitude. The observed slow component in the photocurrent buildup indicates that the effect is associated with enhanced proton conduction when light is combined with water and oxygen exposure.

Journal ArticleDOI
TL;DR: In this paper, the photometric and spectrophotometric properties of the nucleus of the comet 67P/Churyumov-Gerasimenko (67P) were derived from the OSIRIS imaging system, which consists of a WAC and a Narrow Angle Camera (NAC).
Abstract: The Rosetta mission of the European Space Agency has been orbiting the comet 67P/Churyumov-Gerasimenko (67P) since August 2014 and is now in its escort phase. A large complement of scientific experiments designed to complete the most detailed study of a comet ever attempted are onboard Rosetta. Aims. We present results for the photometric and spectrophotometric properties of the nucleus of 67P derived from the OSIRIS imaging system, which consists of a Wide Angle Camera (WAC) and a Narrow Angle Camera (NAC). The observations presented here were performed during July and the beginning of August 2014, during the approach phase, when OSIRIS was mapping the surface of the comet with several filters at different phase angles (1.3°–54°). The resolution reached up to 2.1 m/px. Methods. The OSIRIS images were processed with the OSIRIS standard pipeline, then converted into I/F radiance factors and corrected for the illumination conditions at each pixel using the Lommel-Seeliger disk law. Color cubes of the surface were produced by stacking registered and illumination-corrected images. Furthermore, photometric analysis was performed both on disk-averaged photometry in several filters and on disk-resolved images acquired with the NAC orange filter, centered at 649 nm, using Hapke modeling. Results. The disk-averaged phase function of the nucleus of 67P shows a strong opposition surge with a G parameter value of - 0.13±0.01 in the HG system formalism and an absolute magnitude Hv (1, 1, 0) = 15.74±0.02 mag. The integrated spectrophotometry in 20 filters covering the 250-1000 nm wavelength range shows a red spectral behavior, without clear absorption bands except for a potential absorption centered at ∼ 290 nm that is possibly due to SO2 ice. The nucleus shows strong phase reddening, with disk- averaged spectral slopes increasing from 11%/(100 nm) to 16%/(100 nm) in the 1.3°–54° phase angle range. The geometric albedo of the comet is 6.5±0.2% at 649 nm, with local variations of up to ∼ 16% in the Hapi region. From the disk-resolved images we computed the spectral slope together with local spectrophotometry and identified three distinct groups of regions (blue, moderately red, and red). The Hapi region is the brightest, the bluest in term of spectral slope, and the most active surface on the comet. Local spectrophotometry shows an enhancement of the flux in the 700-750 nm that is associated with coma emissions.