scispace - formally typeset
Search or ask a question

Showing papers by "Cold Spring Harbor Laboratory published in 1998"


Journal ArticleDOI
28 Aug 1998-Science
TL;DR: This work has shown that understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.
Abstract: Apoptosis, an evolutionarily conserved form of cell suicide, requires specialized machinery. The central component of this machinery is a proteolytic system involving a family of proteases called caspases. These enzymes participate in a cascade that is triggered in response to proapoptotic signals and culminates in cleavage of a set of proteins, resulting in disassembly of the cell. Understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.

6,924 citations


Journal ArticleDOI
TL;DR: A comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle is created, and it is found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins.
Abstract: We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures sync...

5,176 citations


Journal ArticleDOI
TL;DR: Evidence from Aplysia, Drosophila, mice, and rats shows that CREB-dependent transcription is required for the cellular events underlying long-term but not short-term memory, indicating thatCREB may be a universal modulator of processes required for memory formation.
Abstract: The cAMP responsive element binding protein (CREB) is a nuclear protein that modulates the transcription of genes with cAMP responsive elements in their promoters. Increases in the concentration of either calcium or cAMP can trigger the phosphorylation and activation of CREB. This transcription factor is a component of intracellular signaling events that regulate a wide range of biological functions, from spermatogenesis to circadian rhythms and memory. Here we review the key features of CREB-dependent transcription, as well as the involvement of CREB in memory formation. Evidence from Aplysia, Drosophila, mice, and rats shows that CREB-dependent transcription is required for the cellular events underlying long-term but not short-term memory. While the work in Aplysia and Drosophila only involved CREB function in very simple forms of conditioning, genetic and pharmacological studies in mice and rats demonstrate that CREB is required for a variety of complex forms of memory, including spatial and social learning, thus indicating that CREB may be a universal modulator of processes required for memory formation.

1,438 citations


Journal ArticleDOI
07 Aug 1998-Cell
TL;DR: Comparison of the requirement for Casp9 and Casp3 in different apoptotic settings indicates the existence of at least four different apoptosis pathways in mammalian cells.

1,337 citations


Journal ArticleDOI
09 Apr 1998-Nature
TL;DR: Findings indicate an essential role for telomerase, and hence telomeres, in the maintenance of genomic integrity and in the long-term viability of high-renewal organ systems.
Abstract: We have investigated the role of the enzyme telomerase in highly proliferative organs in successive generations of mice lacking telomerase RNA. Late-generation animals exhibited defective spermatogenesis, with increased programmed cell death (apoptosis) and decreased proliferation in the testis. The proliferative capacity of haematopoietic cells in the bone marrow and spleen was also compromised. These progressively adverse effects coincided with substantial erosion of telomeres (the termini of eukaryotic chromosomes) and fusion and loss of chromosomes. These findings indicate an essential role for telomerase, and hence telomeres, in the maintenance of genomic integrity and in the long-term viability of high-renewal organ systems.

1,270 citations


Journal ArticleDOI
TL;DR: It is reported that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease.
Abstract: Since their discovery, protein tyrosine phosphatases have been speculated to play a role in tumor suppression because of their ability to antagonize the growth-promoting protein tyrosine kinases. Recently, a tumor suppressor from human chromosome 10q23, called PTEN or MMAC1, has been identified that shares homology with the protein tyrosine phosphatase family. Germ-line mutations in PTEN give rise to several related neoplastic disorders, including Cowden disease. A key step in understanding the function of PTEN as a tumor suppressor is to identify its physiological substrates. Here we report that a missense mutation in PTEN, PTEN-G129E, which is observed in two Cowden disease kindreds, specifically ablates the ability of PTEN to recognize inositol phospholipids as a substrate, suggesting that loss of the lipid phosphatase activity is responsible for the etiology of the disease. Furthermore, expression of wild-type or substrate-trapping forms of PTEN in HEK293 cells altered the levels of the phospholipid products of phosphatidylinositol 3-kinase and ectopic expression of the phosphatase in PTEN-deficient tumor cell lines resulted in the inhibition of protein kinase (PK) B/Akt and regulation of cell survival.

1,197 citations


Journal ArticleDOI
06 Feb 1998-Science
TL;DR: The autophosphorylation of alphaCaMKII at Thr286 appears to be required for LTP and learning.
Abstract: The calcium-calmodulin-dependent kinase II (CaMKII) is required for hippocampal long-term potentiation (LTP) and spatial learning. In addition to its calcium-calmodulin (CaM)-dependent activity, CaMKII can undergo autophosphorylation, resulting in CaM-independent activity. A point mutation was introduced into the alphaCaMKII gene that blocked the autophosphorylation of threonine at position 286 (Thr286) of this kinase without affecting its CaM-dependent activity. The mutant mice had no N-methyl-D-aspartate receptor-dependent LTP in the hippocampal CA1 area and showed no spatial learning in the Morris water maze. Thus, the autophosphorylation of alphaCaMKII at Thr286 appears to be required for LTP and learning.

1,056 citations


Journal ArticleDOI
TL;DR: The precisely opposite response of normal and immortalized cells to constitutive activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to limit the transforming potential of excessive Ras mitogenic signaling.
Abstract: Oncogenic Ras transforms immortal rodent cells to a tumorigenic state, in part, by constitutively transmitting mitogenic signals through the mitogen-activated protein kinase (MAPK) cascade. In primary cells, Ras is initially mitogenic but eventually induces premature senescence involving the p53 and p16INK4a tumor suppressors. Constitutive activation of MEK (a component of the MAPK cascade) induces both p53 and p16, and is required for Ras-induced senescence of normal human fibroblasts. Furthermore, activated MEK permanently arrests primary murine fibroblasts but forces uncontrolled mitogenesis and transformation in cells lacking either p53 or INK4a. The precisely opposite response of normal and immortalized cells to constitutive activation of the MAPK cascade implies that premature senescence acts as a fail-safe mechanism to limit the transforming potential of excessive Ras mitogenic signaling. Consequently, constitutive MAPK signaling activates p53 and p16 as tumor suppressors.

928 citations


Journal ArticleDOI
17 Apr 1998-Science
TL;DR: The gametophytic maternal effect mutant medea (mea) shows aberrant growth regulation during embryogenesis in Arabidopsis thaliana, consistent with the parental conflict theory for the evolution of parent-of-origin-specific effects.
Abstract: The gametophytic maternal effect mutant medea (mea) shows aberrant growth regulation during embryogenesis in Arabidopsis thaliana. Embryos derived from mea eggs grow excessively and die during seed desiccation. Embryo lethality is independent of the paternal contribution and gene dosage. The mea phenotype is consistent with the parental conflict theory for the evolution of parent-of-origin-specific effects. MEA encodes a SET domain protein similar to Enhancer of zeste, a member of the Polycomb group. In animals, Polycomb group proteins ensure the stable inheritance of expression patterns through cell division and regulate the control of cell proliferation.

854 citations


Journal ArticleDOI
TL;DR: Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression.
Abstract: Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.

818 citations


Journal ArticleDOI
TL;DR: It is shown that Myc induces telomerase in both normal human mammary epithelial cells (HMECs) and normal human diploid fibroblasts, and both Myc and hEST2 can extend the life span of HMECs.
Abstract: Telomere maintenance has been proposed as an essential prerequisite to human tumor development. The telomerase enzyme is itself a marker for tumor cells, but the genetic alterations that activate the enzyme during neoplastic transformation have remained a mystery. Here, we show that Myc induces telomerase in both normal human mammary epithelial cells (HMECs) and normal human diploid fibroblasts. Myc increases expression of hEST2 (hTRT/TP2), the limiting subunit of telomerase, and both Myc and hEST2 can extend the life span of HMECs. The ability of Myc to activate telomerase may contribute to its ability to promote tumor formation.

Journal ArticleDOI
TL;DR: Reintroduction of p19(ARF) functions as part of a p53-dependent failsafe mechanism to counter uncontrolled proliferation and may contribute to E1A's ability to enhance radio- and chemosensitivity.
Abstract: The adenovirus E1A oncogene activates p53 through a signaling pathway involving the retinoblastoma protein and the tumor suppressor p19(ARF). The ability of E1A to induce p53 and its transcriptional targets is severely compromised in ARF-null cells, which remain resistant to apoptosis following serum depletion or adriamycin treatment. Reintroduction of p19(ARF) restores p53 accumulation and resensitizes ARF-null cells to apoptotic signals. Therefore, p19(ARF) functions as part of a p53-dependent failsafe mechanism to counter uncontrolled proliferation. Synergistic effects between the p19(ARF) and DNA damage pathways in inducing p53 may contribute to E1A's ability to enhance radio- and chemosensitivity.

Journal ArticleDOI
TL;DR: The results suggest that proper assembly of mitotic chromosomes is regulated by two distinct classes of SMC protein complexes, cohesins and condensins.
Abstract: The structural maintenance of chromosomes (SMC) family is a growing family of chromosomal ATPases. The founding class of SMC protein complexes, condensins, plays a central role in mitotic chromosome condensation. We report here a new class of SMC protein complexes containing XSMC1 and XSMC3, Xenopus homologs of yeast Smc1p and Smc3p, respectively. The protein complexes (termed cohesins) exist as two major forms with sedimentation coefficients of 9S and 14S. 9S cohesin is a heterodimer of XSMC1 and XSMC3, whereas 14S cohesin contains three additional subunits. One of them has been identified as a Xenopus homolog of the Schizosaccharomyces pombe Rad21p implicated in DNA repair and the Saccharomyces cerevisiae Scc1p/Mcd1p implicated in sister chromatid cohesion. 14S cohesin binds to interphase chromatin independently of DNA replication and dissociates from it at the onset of mitosis. Immunodepletion of cohesins during interphase causes defects in sister chromatid cohesion in subsequent mitosis, whereas condensation is unaffected. These results suggest that proper assembly of mitotic chromosomes is regulated by two distinct classes of SMC protein complexes, cohesins and condensins.

Journal ArticleDOI
TL;DR: The identified mutation in Arabidopsis called fruitfull (ful-1), which abolishes elongation of the silique after fertilization, and the effect on fruit development, ful cauline leaves are broader than those of wild type and show a reduction in the number of internal cell layers, suggest that AGL8/FUL regulates the transcription of genes required for cellular differentiation during fruit and leaf development.
Abstract: Fruit morphogenesis is a process unique to flowering plants, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. We have identified a mutation in Arabidopsis called fruitfull (ful-1), which abolishes elongation of the silique after fertilization. The ful-1 mutation is caused by the insertion of a DsE transposable enhancer trap element into the 5′ untranslated leader of the AGL8 MADS-box gene. βglucuronidase (GUS) reporter gene expression in the enhancer trap line is observed specifically in all cell layers of the valve tissue, but not in the replum, the septum or the seeds, and faithfully mimics RNA in situ hybridization data reported previously. The lack of coordinated growth of the fruit tissues leads to crowded seeds, a failure of dehiscence and, frequently, the premature rupture of the carpel valves. The primary defect of ful-1 fruits is within the valves, whose cells fail to elongate and differentiate. Stomata, which are frequent along the epidermis of wild-type valves, are completely eliminated in the ful mutant valves. In addition to the effect on fruit development, ful cauline leaves are broader than those of wild type and show a reduction in the number of internal cell layers. These data suggest that AGL8/FUL regulates the transcription of genes required for cellular differentiation during fruit and leaf development. SUMMARY

Journal ArticleDOI
TL;DR: It is concluded that a remarkably diverse set of sequences can function as ESEs, consistent with the fact that exonic enhancers evolved within extremely diverse protein coding sequences and are recognized by a small number of SR proteins that bind RNA with limited sequence specificity.
Abstract: Using an in vitro randomization and functional selection procedure, we have identified three novel classes of exonic splicing enhancers (ESEs) recognized by human SF2/ASF, SRp40, and SRp55, respectively. These ESEs are functional in splicing and are highly specific. For SF2/ASF and SRp55, in most cases, only the cognate SR protein can efficiently recognize an ESE and activate splicing. In contrast, the SRp40-selected ESEs can function with either SRp40 or SRp55, but not with SF2/ASF. UV cross-linking/competition and immunoprecipitation experiments showed that SR proteins recognize their cognate ESEs in nuclear extract by direct and specific binding. A motif search algorithm was used to derive consensus sequences for ESEs recognized by these SR proteins. Each SR protein yielded a distinct 5- to 7-nucleotide degenerate consensus. These three consensus sequences occur at higher frequencies in exons than in introns and may thus help define exon–intron boundaries. They occur in clusters within regions corresponding to naturally occurring, mapped ESEs. We conclude that a remarkably diverse set of sequences can function as ESEs. The degeneracy of these motifs is consistent with the fact that exonic enhancers evolved within extremely diverse protein coding sequences and are recognized by a small number of SR proteins that bind RNA with limited sequence specificity.

Journal ArticleDOI
TL;DR: It is shown that different SR proteins have unique intracellular transport properties and suggest that the family members that shuttle may have roles not only in nuclear pre-mRNA splicing but also in mRNA transport, cytoplasmic events, and/or processes that involve communication between the nucleus and the cy toplasm.
Abstract: The SR proteins constitute a large family of nuclear phosphoproteins required for constitutive pre-mRNA splicing. These factors also have global, concentration-dependent effects on alternative splicing regulation and this activity is antagonized by members of the hnRNP A/B family of proteins. We show here that whereas some human SR proteins are confined to the nucleus, three of them-SF2/ASF, SRp20, and 9G8-shuttle rapidly and continuously between the nucleus and the cytoplasm. By swapping the corresponding domains between shuttling and nonshuttling SR proteins, we show that the carboxy-terminal arginine/serine-rich (RS) domain is required for shuttling. This domain, however, is not sufficient to promote shuttling of an unrelated protein reporter, suggesting that stable RNA binding mediated by the RNA-recognition motifs may be required for shuttling. Consistent with such a requirement, a double point-mutation in RRM1 of SF2/ASF that impairs RNA binding prevents the protein from shuttling. In addition, we show that phosphorylation of the RS domain affects the shuttling properties of SR proteins. These findings show that different SR proteins have unique intracellular transport properties and suggest that the family members that shuttle may have roles not only in nuclear pre-mRNA splicing but also in mRNA transport, cytoplasmic events, and/or processes that involve communication between the nucleus and the cytoplasm.

Journal ArticleDOI
TL;DR: Together, these data dissociate hippocampal and nonhippocampal contributions to contextual conditioning, and they provide direct evidence that the hippocampus plays an essential role in the processing of contextual stimuli.
Abstract: The authors describe how (a) the timing of hippocampal lesions and (b) the behavioral-representational demands of the task affect the requirement for the hippocampus in contextual fear conditioning. Post- but not pretraining lesions of the hippocampus greatly reduced contextual fear conditioning. In contrast, pretraining lesions of the hippocampus abolished context discrimination, a procedure in which mice are trained to discriminate between 2 similar chambers (shock context vs. no-shock context). Whereas either contextual- or cue-based strategies can be used to recognize an aversive context, discrimination between similar contexts is optimally acquired by contextual (hippocampal)-based strategies. In keeping with the lesion results, Nf1(+/-)/Nmdar1(+/-) mutant mice, which have spatial learning deficits, are impaired in context discrimination but not in contextual conditioning. Together, these data dissociate hippocampal and nonhippocampal contributions to contextual conditioning, and they provide direct evidence that the hippocampus plays an essential role in the processing of contextual stimuli.

Journal ArticleDOI
TL;DR: It is shown that human exons with flanking genomic DNA sequences can be classified into 12 mutually exclusive categories, which could serve as a standard for future studies so that direct comparisons of results can be made.
Abstract: To facilitate gene finding and for the investigation of human molecular genetics on a genome scale, we present a comprehensive survey on various statistical features of human exons. We first show that human exons with flanking genomic DNA sequences can be classified into 12 mutually exclusive categories. This classification could serve as a standard for future studies so that direct comparisons of results can be made. A database for eight categories (related to human genes in which coding regions are split by introns) was built from GenBank release 87.0 and analyzed by a number of methods to characterize statistical features of these sequences that may serve as controls or regulatory signals for gene expression. The statistical information compiled includes profiles of signals for transcription, splicing and translation, various compositional statistics and size distributions. Further analyses reveal novel correlations and constraints among different splicing features across an internal exon that are consistent with the Exon Definition model. This information is fundamental for a quantitative view of human gene organization, and should be invaluable for individual scientists to design human molecular genetics experiments.

Journal ArticleDOI
12 Jun 1998-Cell
TL;DR: Functional evidence is provided for the involvement of the cAMP signal transduction pathway in the behavioral response to intoxicating levels of ethanol in Drosophila.

Journal ArticleDOI
16 Oct 1998-Science
TL;DR: Results suggest that phosphorylation of 13Scondensin by Cdc2 may trigger mitotic chromosome condensation in vitro.
Abstract: 13S condensin is a multisubunit protein complex essential for mitotic chromosome condensation in Xenopus egg extracts. Purified 13S condensin introduces positive supercoils into DNA in the presence of topoisomerase I and adenosine triphosphate in vitro. The supercoiling activity of 13Scondensin was regulated by mitosis-specific phosphorylation. Immunodepletion, in vitro phosphorylation, and peptide-mapping experiments indicated that Cdc2 is likely to be the kinase that phosphorylates and activates 13S condensin. Multiple Cdc2 phosphorylation sites are clustered in the carboxyl-terminal domain of the XCAP-D2 (Xenopus chromosome-associated polypeptide D2) subunit. These results suggest that phosphorylation of 13Scondensin by Cdc2 may trigger mitotic chromosome condensation in vitro.

Journal ArticleDOI
09 Jan 1998-Science
TL;DR: Exogenous CaMKII activity limits dendritic growth and stabilizes dendrites, and it may act as an activity-dependent mediator of neuronal maturation.
Abstract: Calcium-calmodulin-dependent protein kinase II (CaMKII) promotes the maturation of retinotectal glutamatergic synapses in Xenopus. Whether CaMKII activity also controls morphological maturation of optic tectal neurons was tested using in vivo time-lapse imaging of single neurons over periods of up to 5 days. Dendritic arbor elaboration slows with maturation, in correlation with the onset of CaMKII expression. Elevating CaMKII activity in young neurons by viral expression of constitutively active CaMKII slowed dendritic growth to a rate comparable to that of mature neurons. CaMKII overexpression stabilized dendritic structure in more mature neurons, whereas CaMKII inhibition increased their dendritic growth. Thus, endogenous CaMKII activity limits dendritic growth and stabilizes dendrites, and it may act as an activity-dependent mediator of neuronal maturation.

Journal Article
01 Apr 1998-RNA
TL;DR: The protein levels of these antagonistic splicing factors vary naturally over a very wide range, supporting the notion that changes in the ratio of these proteins can affect alternative splicing of a variety of pre-mRNAs in vivo.
Abstract: The SR proteins are essential metazoan pre-mRNA splicing factors that can also influence the selection of alternative 59 splice sites in a concentration-dependent manner. Their activity in alternative splicing in vitro is antagonized by members of the hnRNP A/B family of proteins. The opposite effects of members of these two families of antagonistic splicing factors in vitro and upon overexpression in vivo suggest that changes in their relative levels may be a natural mechanism for the regulation of alternative splicing in vivo. One prediction of this model is that the ratios of these antagonists should vary in different cell types and in other situations in which cellular or viral transcripts are differentially spliced. We raised monoclonal antibodies specific for SF2/ASF and used them to measure the abundance of SF2/ASF protein and its isoforms, its phosphorylation state in vivo and during splicing in vitro, and its association with the spliceosome. SF2/ASF exists predominantly or exclusively in a highly phosphorylated state in vivo in all cell types examined, and unphosphorylated protein was not detectable. Unphosphorylated recombinant SF2/ASF becomes rapidly phosphorylated under splicing conditions in HeLa cell extracts and associates stably with one or more exons of b-globin pre-mRNA. This interaction appears to persist through the splicing reaction and SF2/ASF remains bound to spliced mRNA. We compared the distribution of SF2/ASF to that of its antagonist, hnRNP A1, in different rat tissues and in immortal and transformed cell lines. We found that the protein levels of these antagonistic splicing factors vary naturally over a very wide range, supporting the notion that changes in the ratio of these proteins can affect alternative splicing of a variety of pre-mRNAs in vivo.

Journal ArticleDOI
TL;DR: The current state of genetic analysis of learning and memory in the fruitfly, Drosophila melanogaster, is reviewed, suggesting that core cellular mechanisms of simple forms of learning are evolutionarily conserved and biological pathways discovered in invertebrates are likely to be conserved in vertebrates as well.
Abstract: Genetic approaches have been used to investigate increasingly complex biological systems. Here we review the current state of genetic analysis of learning and memory in the fruitfly, Drosophila melanogaster. Emerging findings support two main themes. First, discovery and manipulation of genes involved with behavioral plasticity in genetically accessible systems such as D. melanogaster enables dissection of the biochemical, cellular, anatomical, and behavioral pathways of learning and memory. Second, because core cellular mechanisms of simple forms of learning are evolutionarily conserved, biological pathways discovered in invertebrates are likely to be conserved in vertebrate systems as well.

Journal ArticleDOI
24 Apr 1998-Science
TL;DR: Binding of Cdc45p to chromatin depends on Clb-Cdc28 kinase activity as well as functional Cdc6p and Mcm2p, which suggests that CDC45p associates with the prereplication complex after activation of S-phase cyclin-dependent kinases (CDKs).
Abstract: Cdc45p, a protein essential for initiation of DNA replication, associates with chromatin after "start" in late G1 and during the S phase of the cell cycle Binding of Cdc45p to chromatin depends on Clb-Cdc28 kinase activity as well as functional Cdc6p and Mcm2p, which suggests that Cdc45p associates with the prereplication complex after activation of S-phase cyclin-dependent kinases (CDKs) As indicated by the timing and the CDK dependence, binding of Cdc45p to chromatin is crucial for commitment to initiation of DNA replication During S phase, Cdc45p physically interacts with minichromosome maintenance (MCM) proteins on chromatin; however, dissociation of Cdc45p from chromatin is slower than that of MCMs, which indicates that the proteins are released by different mechanisms

Journal ArticleDOI
TL;DR: It is suggested that p46 and p48 are core-histone-binding subunits that target chromatin assembly factors, chromatin remodeling factors, histone acetyltransferases and histone deacetylases to their histone substrates in a manner that is regulated by nucleosomal DNA.

Journal ArticleDOI
TL;DR: The results support a simple model showing how the gene encoding P may act as a quantitative trait locus controlling insecticidal C-glycosyl flavone level in maize silks, and suggest how p1 might confer a selective advantage against insect predation in maize.
Abstract: Manipulation of plant natural product biosynthesis through genetic engineering is an attractive but technically challenging goal. Here, we demonstrate that different secondary metabolites can be produced in cultured maize cells by ectopic expression of the appropriate regulatory genes. Cell lines engineered to express the maize transcriptional activators C1 and R accumulate two cyanidin derivatives, which are similar to the predominant anthocyanin found in differentiated plant tissues. In contrast, cell lines that express P accumulate various 3-deoxy flavonoids. Unexpectedly, P-expressing cells in culture also accumulate phenylpropanoids and green fluorescent compounds that are targeted to different subcellular compartments. Two endogenous biosynthetic genes (c2 and a1, encoding chalcone synthase and flavanone/dihydroflavonol reductase, respectively) are independently activated by ectopic expression of either P or C1/R, and there is a dose-response relationship between the transcript level of P and the degree to which c2 or a1 is expressed. Our results support a simple model showing how the gene encoding P may act as a quantitative trait locus controlling insecticidal C-glycosyl flavone level in maize silks, and they suggest how p1 might confer a selective advantage against insect predation in maize.

Journal ArticleDOI
TL;DR: The observed interactions between Nef and fibroblasts indicate that Nef downregulates class I MHC and CD4 surface expression via different interactions with the protein sorting machinery, and link the sorting and signal transduction machineries in the regulation of classI MHC surface expression by Nef.
Abstract: Nef, a regulatory protein of human and simian immunodeficiency viruses, downregulates cell surface expression of both class I MHC and CD4 molecules in T cells by accelerating their endocytosis. Fibroblasts were used to study alterations in the traffic of class I MHC complexes induced by Nef. We found that Nef downregulates class I MHC complexes by a novel mechanism involving the accumulation of endocytosed class I MHC in the trans-Golgi, where it colocalizes with the adaptor protein-1 complex (AP-1). This effect of Nef on class I MHC traffic requires the SH3 domain-binding surface and a cluster of acidic amino acid residues in Nef, both of which are also required for Nef to downregulate class I MHC surface expression and to alter signal transduction in T cells. Downregulation of class I MHC complexes from the surface of T cells also requires a tyrosine residue in the cytoplasmic domain of the class I MHC heavy chain molecule. The requirement of the same surfaces of the Nef molecule for downregulation of surface class I MHC complexes in T cells and for their accumulation in the trans-Golgi of fibroblasts indicates that the two effects of Nef involve similar interactions with the host cell machinery and involve a molecular mechanism regulating class I MHC traffic that is common for both of these cell types. Interestingly, the downregulation of class I MHC does not require the ability of Nef to colocalize with the adaptor protein-2 complex (AP-2). We showed previously that the ability of Nef to colocalize with AP-2 correlates with the ability of Nef to downregulate CD4 expression. Our observations indicate that Nef downregulates class I MHC and CD4 surface expression via different interactions with the protein sorting machinery, and link the sorting and signal transduction machineries in the regulation of class I MHC surface expression by Nef.

Journal Article
TL;DR: PTEN/MMAC1 is a tumor suppressor gene that is mutated in a variety of cancers and appears to suppress tumor growth by regulating phosphatidylinositol 3'-kinase signaling.
Abstract: PTEN/MMAC1 is a tumor suppressor gene that is mutated in a variety of cancers PTEN encodes a phosphatase that recognizes phosphoprotein substrates and the phospholipid, phosphatidylinositol-3,4,5-triphosphate PTEN inhibited cell growth and/or colony formation in all of the epithelial lines tested with one exception The decrease in cellular proliferation was associated with an induction of apoptosis and an inhibition of signaling through the phosphatidylinositol 3′-kinase pathway Akt/protein kinase B , a gene whose antiapoptotic function is regulated by phosphatidylinositol-3,4,5-triphosphate, was able to rescue cells from PTEN-dependent death PTEN, therefore, appears to suppress tumor growth by regulating phosphatidylinositol 3′-kinase signaling

Journal ArticleDOI
TL;DR: The identification of two closely related Pak3-binding proteins, possibly arising from alternative splicing, designated p50 and p85Cool-1 (cloned out of library) are reported, indicating a novel mechanism of regulation of Pak signaling.

Journal ArticleDOI
TL;DR: The results indicate that AMPA and NMDA receptors can differentially influence dendritic growth at different stages of neuronal development, in correlation with changes in the relative contribution of the receptor subtype to synaptic transmission.
Abstract: Glutamatergic retinotectal inputs mediated principally by NMDA receptors can be recorded from optic tectal neurons early during their morphological development in Xenopus tadpoles. As tectal cell dendrites elaborate, retinotectal synaptic responses acquire an AMPA receptor-mediated synaptic component, in addition to the NMDA component. Here, we tested whether glutamatergic activity was required for the elaboration of dendritic arbors in Xenopus optic tectal neurons. In vivo time-lapse imaging of single DiI-labeled neurons shows that the NMDA receptor antagonist APV (100 microM) blocked the early development of the tectal cell dendritic arbor, whereas the AMPA receptor antagonist CNQX (20 microM) or the sodium channel blocker TTX (1 microM) did not. The decreased dendritic development is attributable to failure to add new branches and extend preexisting branches. These observations indicate that NMDA-type glutamatergic activity promotes the initial development of the dendritic arbor. At later stages of tectal neuron development when AMPA receptor-mediated synaptic transmission is strong, both APV and CNQX decrease dendritic arbor branch length, consistent with a role for glutamatergic synaptic transmission in maintaining dendritic arbor structure. These results indicate that AMPA and NMDA receptors can differentially influence dendritic growth at different stages of neuronal development, in correlation with changes in the relative contribution of the receptor subtype to synaptic transmission.