scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, DNA, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The POU domain is a novel bipartite DNA-binding structure in which the POU homoeo and POU-specific regions form two subdomains that are both required for DNA binding but are held together by a flexible linker.
Abstract: The POU domain1 (pronounced 'pow') is a highly charged 155–162-amino-acid (aa) region of sequence similarity contained within three mammalian transcription factors. Pit-1 (ref. 2), Oct-1 (ref. 3) and Oct-2 (ref. 4), and the product of the nematode gene unc-86 (ref. 5) which is involved in determining neural cell lineage. This domain consists of two subdomains, a C-terminal homoeo domain and an N-terminal POL -specific region separated by a short nonconserved linker; the sequence relationship shows that the POU homoeo domains form a distinct POU-related family. In the ubiquitous and lymphoid-specific octamer-motif binding proteins Oct-1 and Oct-2, the POU domain is sufficient for sequence-specific DNA binding3,4. Homoeobox domains contain a helix-turn-helix DNA-binding motif6,7, first identified in bacterial repressers8. The helix-turn-helix region of the POU domain is important for DNA binding3,9 and, in other classes of homoeo-containing proteins, the entire homoeo domain is sufficient for DNA binding10–12; thus the new POU-specific region could be involved in other functions such as protein–protein interactions. Nevertheless, we show here that in fact the POU domain is a novel bipartite DNA-binding structure in which the POU homoeo and POU-specific regions form two subdomains that are both required for DNA binding but are held together by a flexible linker.

689 citations

Journal ArticleDOI
24 Sep 1993-Science
TL;DR: Two unrelated receptors may activate a common nuclear signal transduction pathway that, through differential use of latent cytoplasmic proteins, permits these receptors to regulate both common and unique sets of genes.
Abstract: Growth factors and cytokines act through cell surface receptors with different biochemical properties Yet each type of receptor can elicit similar as well as distinct biological responses in target cells, suggesting that distinct classes of receptors activate common gene sets Epidermal growth factor, interferon-gamma, and interleukin-6 all activated, through direct tyrosine phosphorylation, latent cytoplasmic transcription factors that recognized similar DNA elements However, different ligands activated different patterns of factors with distinct DNA-binding specificities in the same and different cells Thus, unrelated receptors may activate a common nuclear signal transduction pathway that, through differential use of latent cytoplasmic proteins, permits these receptors to regulate both common and unique sets of genes

683 citations

Journal ArticleDOI
20 Oct 2005-Neuron
TL;DR: The switch from NR2B to NR2A content in synaptic NMDA-Rs normally observed in many brain regions may contribute to reduced plasticity by controlling the binding of active CaMKII.

681 citations

Journal ArticleDOI
25 Jun 1993-Science
TL;DR: The ddm1 mutations were used to demonstrate that de novo DNA methylation in vivo is slow, and are associated with a segregation distortion phenotype.
Abstract: Three DNA hypomethylation mutants of the flowering plant Arabidopsis thaliana were isolated by screening mutagenized populations for plants containing centromeric repetitive DNA arrays susceptible to digestion by a restriction endonuclease that was sensitive to methylated cytosines. The mutations are recessive, and at least two are alleles of a single locus, designated DDM1 (for decrease in DNA methylation). Amounts of 5-methylcytosine were reduced over 70 percent in ddm1 mutants. Despite this reduction in DNA methylation levels, ddm1 mutants developed normally and exhibited no striking morphological phenotypes. However, the ddm1 mutations are associated with a segregation distortion phenotype. The ddm1 mutations were used to demonstrate that de novo DNA methylation in vivo is slow.

681 citations

Journal ArticleDOI
09 Jun 2011-Neuron
TL;DR: The results show that, relative to males, females have greater resistance to autism from genetic causes, which raises the question of the fate of female carriers.

680 citations


Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288