scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, DNA, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that hsp70 immunocytochemistry may serve as a marker for neuronal circuitry involved in proposed excitotoxic mechanisms after ischemia and other stresses.
Abstract: Induction of the 70-kDa heat shock protein, hsp70, has been demonstrated in brain following experimental stroke. In the present study, hsp70 was localized in gerbil brain at intervals after transient ischemia using a monoclonal antibody specific for stress-inducible forms of hsp70-related proteins. Induced immunoreactivity was found only in neurons, primarily in hippocampus, striatum, entorhinal cortex and some neocortical regions. Notably hsp70 accumulation was minimal in hippocampal CA1 neurons which die after brief ischemic episodes, but was most pronounced in dentate granule cells and CA3 neurons which are spared. The peak of CA3 immunoreactivity occurred at 48-h recirculation, at the onset of CA1 neuron loss at 2–4 days, demonstrating that hsp70 induction is also a component of this delayed hippocampal pathophysiology rather than a direct response to the metabolic disruption of the initial ischemic episode. These results suggest that hsp70 immunocytochemistry may serve as a marker for neuronal circuitry involved in proposed excitotoxic mechanisms after ischemia and other stresses. Control animals showed immunoreactivity in ependymal cells lining the ventricles, indicating a role for hsp70 in normal functioning of these specialized cells.

447 citations

Journal ArticleDOI
TL;DR: A multiple sequence alignment of 42 amino-Mtases revealed nine conserved motifs, corresponding to the motifs I to VIII and X previously defined in C5-cytosine Mtases, which appear to be more closely related than has been appreciated.

447 citations

Journal ArticleDOI
TL;DR: This work evaluated rat PPC neurons recorded during multisensory decisions and revealed that the network explored different dimensions during decision and movement, suggesting that a single network of neurons can support the evolving behavioral demands of decision-making.
Abstract: The posterior parietal cortex (PPC) receives diverse inputs and is involved in a dizzying array of behaviors These many behaviors could rely on distinct categories of neurons specialized to represent particular variables or could rely on a single population of PPC neurons that is leveraged in different ways To distinguish these possibilities, we evaluated rat PPC neurons recorded during multisensory decisions Newly designed tests revealed that task parameters and temporal response features were distributed randomly across neurons, without evidence of categories This suggests that PPC neurons constitute a dynamic network that is decoded according to the animal's present needs To test for an additional signature of a dynamic network, we compared moments when behavioral demands differed: decision and movement Our new state-space analysis revealed that the network explored different dimensions during decision and movement These observations suggest that a single network of neurons can support the evolving behavioral demands of decision-making

447 citations

Journal ArticleDOI
01 Apr 1982-Nature
TL;DR: It is found that T24, a cell line derived from a human bladder carcinoma, can induce the morphological transformation of NIH 3T3 cells, and the gene responsible for this transformation is human in origin, <5 kilobase pairs in size and homologous to a 1,100-base polyadenylated RNA species found in T24 and HeLa cells.
Abstract: DNA from T24, a cell line derived from a human bladder carcinoma, can induce the morphological transformation of NIH 3T3 cells. Using techniques of gene rescue to clone the gene responsible for this transformation, we have found that it is human in origin, less than 5 kilobase pairs in size and is homologous to a 1,100-base polyadenylated RNA species found in T24 and HeLa cells. Blot analysis indicates extensive restriction endonuclease polymorphism near this gene, in human DNAs.

446 citations

Journal ArticleDOI
20 Jun 2013-Nature
TL;DR: A connection between the circuit-level function of different interneuron types in regulating the flow of information and the behavioural functions served by the cortical circuits is suggested, bolster the hope that functional response diversity during behaviour can in part be explained by cell-type diversity.
Abstract: Neurons in the prefrontal cortex exhibit diverse behavioural correlates, an observation that has been attributed to cell-type diversity. To link identified neuron types with network and behavioural functions, we recorded from the two largest genetically defined inhibitory interneuron classes, the perisomatically targeting parvalbumin (PV) and the dendritically targeting somatostatin (SOM) neurons in anterior cingulate cortex of mice performing a reward foraging task. Here we show that PV and a subtype of SOM neurons form functionally homogeneous populations showing a double dissociation between both their inhibitory effects and behavioural correlates. Out of several events pertaining to behaviour, a subtype of SOM neurons selectively responded at reward approach, whereas PV neurons responded at reward leaving and encoded preceding stay duration. These behavioural correlates of PV and SOM neurons defined a behavioural epoch and a decision variable important for foraging (whether to stay or to leave), a crucial function attributed to the anterior cingulate cortex. Furthermore, PV neurons could fire in millisecond synchrony, exerting fast and powerful inhibition on principal cell firing, whereas the inhibitory effect of SOM neurons on firing output was weak and more variable, consistent with the idea that they respectively control the outputs of, and inputs to, principal neurons. These results suggest a connection between the circuit-level function of different interneuron types in regulating the flow of information and the behavioural functions served by the cortical circuits. Moreover, these observations bolster the hope that functional response diversity during behaviour can in part be explained by cell-type diversity.

445 citations


Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288