scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, DNA, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.
Abstract: A consistent feature of neurons in patients with mental retardation is abnormal dendritic structure and/or alterations in dendritic spine morphology. Deficits in the regulation of the dendritic cytoskeleton affect both the structure and function of dendrites and synapses and are believed to underlie mental retardation in some instances. In support of this, there is good evidence that alterations in signaling pathways involving the Rho family of small GTPases, key regulators of the actin and microtubule cytoskeletons, contribute to both syndromic and nonsyndromic mental retardation disorders. Because the Rho GTPases have been shown to play increasingly well-defined roles in determining dendrite and dendritic spine development and morphology, Rho signaling has been suggested to be important for normal cognition. The purpose of this review is to summarize recent data on the Rho GTPases pertaining to dendrite and dendritic spine morphogenesis, as well as to highlight their involvement in mental retardation resulting from a variety of genetic mutations within regulators and effectors of these molecules.

368 citations

Journal ArticleDOI
TL;DR: The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes.
Abstract: The cellular pathways involved in maintaining genome stability halt cell cycle progression in the presence of DNA damage or incomplete replication. Proteins required for this pathway include Rad17, Rad9, Hus1, Rad1, and Rfc-2, Rfc-3, Rfc-4, and Rfc-5. The heteropentamer replication factor C (RFC) loads during DNA replication the homotrimer proliferating cell nuclear antigen (PCNA) polymerase clamp onto DNA. Sequence similarities suggest the biochemical functions of an RSR (Rad17–Rfc2–Rfc3–Rfc4–Rfc5) complex and an RHR heterotrimer (Rad1–Hus1–Rad9) may be similar to that of RFC and PCNA, respectively. RSR purified from human cells loads RHR onto DNA in an ATP-, replication protein A-, and DNA structure-dependent manner. Interestingly, RSR and RFC differed in their ATPase activities and displayed distinct DNA substrate specificities. RSR preferred DNA substrates possessing 5′ recessed ends whereas RFC preferred 3′ recessed end DNA substrates. Characterization of the biochemical loading reaction executed by the checkpoint clamp loader RSR suggests new insights into the mechanisms underlying recognition of damage-induced DNA structures and signaling to cell cycle controls. The observation that RSR loads its clamp onto a 5′ recessed end supports a potential role for RHR and RSR in diverse DNA metabolism, such as stalled DNA replication forks, recombination-linked DNA repair, and telomere maintenance, among other processes.

367 citations

Journal ArticleDOI
TL;DR: It is shown that low-abundant, conserved ta-siRNAs, termed tasiR-ARFs, move intercellularly from their defined source of biogenesis on the upper side of leaves to the lower side to create a gradient of small RNAs that patterns the abaxial determinant AUXIN RESPONSE FACTOR.
Abstract: MicroRNAs and trans-acting siRNAs (ta-siRNAs) have important regulatory roles in development. Unlike other developmentally important regulatory molecules, small RNAs are not known to act as mobile signals during development. Here, we show that low-abundant, conserved ta-siRNAs, termed tasiR-ARFs, move intercellularly from their defined source of biogenesis on the upper (adaxial) side of leaves to the lower (abaxial) side to create a gradient of small RNAs that patterns the abaxial determinant AUXIN RESPONSE FACTOR3. Our observations have important ramifications for the function of small RNAs and suggest they can serve as mobile, instructive signals during development.

367 citations

Journal ArticleDOI
TL;DR: This article showed that differential methylation at two distinct sites of the H3 amino terminus correlates with contrasting gene activities and may be part of a 'histone code' involved in establishing and maintaining facultative heterochromatin.
Abstract: Studies of histone methylation have shown that H3 can be methylated at lysine 4 (Lys4) or lysine 9 (Lys9). Whereas H3-Lys4 methylation has been correlated with active gene expression, H3-Lys9 methylation has been linked to gene silencing and assembly of heterochromatin in mouse and Schizosaccharomyces pombe. The chromodomain of mouse HP1 (and Swi6 in S. pombe) binds H3 methylated at Lys9, and methylation at this site is thought to mark and promote heterochromatin assembly. We have used a well-studied model of mammalian epigenetic silencing, the human inactive X chromosome, to show that enrichment for H3 methylated at Lys9 is also a distinguishing mark of facultative heterochromatin. In contrast, H3 methylated at Lys4 is depleted in the inactive X chromosome, except in three 'hot spots' of enrichment along its length. Chromatin immunoprecipitation analyses further show that Lys9 methylation is associated with promoters of inactive genes, whereas Lys4 methylation is associated with active genes on the X chromosome. These data demonstrate that differential methylation at two distinct sites of the H3 amino terminus correlates with contrasting gene activities and may be part of a 'histone code' involved in establishing and maintaining facultative heterochromatin.

367 citations

Journal ArticleDOI
01 Nov 1982-Cell
TL;DR: A double-stranded cut at the MAT locus appears to initiate cassette transposition-substitution and defines MAT as the recipient in this process, suggesting that cutting initiates the switching process.

367 citations


Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288