scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, DNA, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: This work proposes a framework for joint modeling of discrete and continuous variables that arise from integrated genomic, epigenomic, and transcriptomic profiling, motivated by the hypothesis that diverse molecular phenotypes can be predicted by a set of orthogonal latent variables that represent distinct molecular drivers, and thus can reveal tumor subgroups of biological and clinical importance.
Abstract: Large-scale integrated cancer genome characterization efforts including the cancer genome atlas and the cancer cell line encyclopedia have created unprecedented opportunities to study cancer biology in the context of knowing the entire catalog of genetic alterations. A clinically important challenge is to discover cancer subtypes and their molecular drivers in a comprehensive genetic context. Curtis et al. [Nature (2012) 486(7403):346-352] has recently shown that integrative clustering of copy number and gene expression in 2,000 breast tumors reveals novel subgroups beyond the classic expression subtypes that show distinct clinical outcomes. To extend the scope of integrative analysis for the inclusion of somatic mutation data by massively parallel sequencing, we propose a framework for joint modeling of discrete and continuous variables that arise from integrated genomic, epigenomic, and transcriptomic profiling. The core idea is motivated by the hypothesis that diverse molecular phenotypes can be predicted by a set of orthogonal latent variables that represent distinct molecular drivers, and thus can reveal tumor subgroups of biological and clinical importance. Using the cancer cell line encyclopedia dataset, we demonstrate our method can accurately group cell lines by their cell-of-origin for several cancer types, and precisely pinpoint their known and potential cancer driver genes. Our integrative analysis also demonstrates the power for revealing subgroups that are not lineage-dependent, but consist of different cancer types driven by a common genetic alteration. Application of the cancer genome atlas colorectal cancer data reveals distinct integrated tumor subtypes, suggesting different genetic pathways in colon cancer progression.

379 citations

Journal ArticleDOI
TL;DR: It is shown that trimethylated H3 Lys9, but not dimethylatedH3 Lys 9, marks chromatin regions for cytosine methylation and that DIM-5 specifically creates this mark.
Abstract: Besides serving to package nuclear DNA, histones carry information in the form of a diverse array of post-translational modifications. Methylation of histones H3 and H4 has been implicated in long-term epigenetic 'memory'. Dimethylation or trimethylation of Lys4 of histone H3 (H3 Lys4) has been found in expressible euchromatin of yeasts and mammals. In contrast, methylation of Lys9 of histone H3 (H3 Lys9) has been implicated in establishing and maintaining the largely quiescent heterochromatin of mammals, yeasts, Drosophila melanogaster and plants. We have previously shown that a DNA methylation mutant of Neurospora crassa, dim-5 (defective in methylation), has a nonsense mutation in the SET domain of an H3-specific histone methyltransferase and that substitutions of H3 Lys9 cause gross hypomethylation of DNA. Similarly, the KRYPTONITE histone methyltransferase is required for full DNA methylation in Arabidopsis thaliana. We used biochemical, genetic and immunological methods to investigate the specific mark for DNA methylation in N. crassa. Here we show that trimethylated H3 Lys9, but not dimethylated H3 Lys9, marks chromatin regions for cytosine methylation and that DIM-5 specifically creates this mark.

378 citations

Journal ArticleDOI
TL;DR: This work presents RaGOO, a reference-guided contig ordering and orienting tool that leverages the speed and sensitivity of Minimap2 to accurately achieve chromosome-scale assemblies in minutes and demonstrates the scalability and utility of the tool.
Abstract: We present RaGOO, a reference-guided contig ordering and orienting tool that leverages the speed and sensitivity of Minimap2 to accurately achieve chromosome-scale assemblies in minutes. After the pseudomolecules are constructed, RaGOO identifies structural variants, including those spanning sequencing gaps. We show that RaGOO accurately orders and orients 3 de novo tomato genome assemblies, including the widely used M82 reference cultivar. We then demonstrate the scalability and utility of RaGOO with a pan-genome analysis of 103 Arabidopsis thaliana accessions by examining the structural variants detected in the newly assembled pseudomolecules. RaGOO is available open source at https://github.com/malonge/RaGOO .

377 citations

Journal ArticleDOI
01 Sep 1995-Science
TL;DR: The shorter template regions of the mouse and other rodent telomerase RNAs could account for the shorter distribution of products (processivity) generated by the mouse enzyme relative to the human telomersase.
Abstract: Telomerase synthesizes telomeric DNA repeats onto chromosome ends de novo. The mouse telomerase RNA component was cloned and contained only 65 percent sequence identity with the human telomerase RNA. Alteration of the template region in vivo generated altered telomerase products. The shorter template regions of the mouse and other rodent telomerase RNAs could account for the shorter distribution of products (processivity) generated by the mouse enzyme relative to the human telomerase. Amounts of telomerase RNA increased in immortal cells derived from primary mouse fibroblasts. RNA was detected in all newborn mouse tissues tested but was decreased during postnatal development.

377 citations

Journal ArticleDOI
TL;DR: The feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes, and results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.
Abstract: Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.

376 citations


Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288