scispace - formally typeset
Search or ask a question

Showing papers by "Cold Spring Harbor Laboratory published in 2017"


Journal ArticleDOI
TL;DR: Direct evidence for CAF heterogeneity in PDA tumor biology is provided, providing direct evidence for disease etiology and therapeutic development in mouse and human PDA tissue.
Abstract: Pancreatic stellate cells (PSCs) differentiate into cancer-associated fibroblasts (CAFs) that produce desmoplastic stroma, thereby modulating disease progression and therapeutic response in pancreatic ductal adenocarcinoma (PDA). However, it is unknown whether CAFs uniformly carry out these tasks or if subtypes of CAFs with distinct phenotypes in PDA exist. We identified a CAF subpopulation with elevated expression of α-smooth muscle actin (αSMA) located immediately adjacent to neoplastic cells in mouse and human PDA tissue. We recapitulated this finding in co-cultures of murine PSCs and PDA organoids, and demonstrated that organoid-activated CAFs produced desmoplastic stroma. The co-cultures showed cooperative interactions and revealed another distinct subpopulation of CAFs, located more distantly from neoplastic cells, which lacked elevated αSMA expression and instead secreted IL6 and additional inflammatory mediators. These findings were corroborated in mouse and human PDA tissue, providing direct evidence for CAF heterogeneity in PDA tumor biology with implications for disease etiology and therapeutic development.

1,379 citations


Journal ArticleDOI
TL;DR: The different modes of regulation of Nrf2 activity are reviewed and the current knowledge of NRF2-mediated transcriptional control is reviewed to provide insight into mechanisms of disease and instruct new treatment strategies.
Abstract: Significance: Nuclear factor E2-related factor 2 (Nrf2) is a transcription factor that coordinates the basal and stress-inducible activation of a vast array of cytoprotective genes. Unders...

1,114 citations


Proceedings Article
01 Jan 2017
TL;DR: In this paper, the authors describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning.
Abstract: Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamical physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Thus, by simply augmenting convolutions, LSTMs, and MLPs with RNs, we can remove computational burden from network components that are not well-suited to handle relational reasoning, reduce overall network complexity, and gain a general ability to reason about the relations between entities and their properties.

982 citations


Journal ArticleDOI
TL;DR: GenomeScope is an open‐source web tool to rapidly estimate the overall characteristics of a genome, including genome size, heterozygosity rate and repeat content from unprocessed short reads, which are essential for studying genome evolution.
Abstract: Summary: GenomeScope is an open-source web tool to rapidly estimate the overall characteristics of a genome, including genome size, heterozygosity rate, and repeat content from unprocessed short reads. These features are essential for studying genome evolution, and help to choose parameters for downstream analysis. We demonstrate its accuracy on 324 simulated and 16 real datasets with a wide range in genome sizes, heterozygosity levels, and error rates. Availability and Implementation: http://genomescope.org , https://github.com/schatzlab/genomescope.git. Contact: mschatz@jhu.edu. Supplementary information: Supplementary data are available at Bioinformatics online.

968 citations


Posted Content
TL;DR: This work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.
Abstract: Relational reasoning is a central component of generally intelligent behavior, but has proven difficult for neural networks to learn. In this paper we describe how to use Relation Networks (RNs) as a simple plug-and-play module to solve problems that fundamentally hinge on relational reasoning. We tested RN-augmented networks on three tasks: visual question answering using a challenging dataset called CLEVR, on which we achieve state-of-the-art, super-human performance; text-based question answering using the bAbI suite of tasks; and complex reasoning about dynamic physical systems. Then, using a curated dataset called Sort-of-CLEVR we show that powerful convolutional networks do not have a general capacity to solve relational questions, but can gain this capacity when augmented with RNs. Our work shows how a deep learning architecture equipped with an RN module can implicitly discover and learn to reason about entities and their relations.

943 citations


Journal ArticleDOI
12 Jun 2017-Nature
TL;DR: The assembly and annotation of a reference genome of maize is reported, using single-molecule real-time sequencing and high-resolution optical mapping to identify transposable element lineage expansions that are unique to maize.
Abstract: Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.

919 citations


Journal ArticleDOI
John L. Bowman1, Takayuki Kohchi2, Katsuyuki T. Yamato3, Jerry Jenkins4, Shengqiang Shu4, Kimitsune Ishizaki5, Shohei Yamaoka2, Ryuichi Nishihama2, Yasukazu Nakamura6, Frédéric Berger7, Catherine Adam4, Shiori S Aki8, Felix Althoff9, Takashi Araki2, Mario A. Arteaga-Vazquez10, Sureshkumar Balasubrmanian1, Kerrie Barry4, Diane Bauer4, Christian R. Boehm11, Liam N. Briginshaw1, Juan Caballero-Pérez12, Bruno Catarino13, Feng Chen14, Shota Chiyoda2, Mansi Chovatia4, Kevin M. Davies15, Mihails Delmans11, Taku Demura8, Tom Dierschke1, Tom Dierschke9, Liam Dolan13, Ana E. Dorantes-Acosta10, D. Magnus Eklund1, D. Magnus Eklund16, Stevie N. Florent1, Eduardo Flores-Sandoval1, Asao Fujiyama6, Hideya Fukuzawa2, Bence Galik, Daniel Grimanelli17, Jane Grimwood4, Ueli Grossniklaus18, Takahiro Hamada19, Jim Haseloff11, Alexander J. Hetherington13, Asuka Higo2, Yuki Hirakawa20, Yuki Hirakawa1, Hope Hundley4, Yoko Ikeda21, Keisuke Inoue2, Shin-ichiro Inoue20, Sakiko Ishida2, Qidong Jia14, Mitsuru Kakita20, Takehiko Kanazawa22, Takehiko Kanazawa19, Yosuke Kawai23, Tomokazu Kawashima24, Tomokazu Kawashima25, Megan Kennedy4, Keita Kinose2, Toshinori Kinoshita20, Yuji Kohara6, Eri Koide2, Kenji Komatsu26, Sarah Kopischke9, Minoru Kubo8, Junko Kyozuka23, Ulf Lagercrantz16, Shih-Shun Lin27, Erika Lindquist4, Anna Lipzen4, Chia-Wei Lu27, Efraín De Luna, Robert A. Martienssen28, Naoki Minamino19, Naoki Minamino22, Masaharu Mizutani5, Miya Mizutani2, Nobuyoshi Mochizuki2, Isabel Monte29, Rebecca A. Mosher30, Hideki Nagasaki, Hirofumi Nakagami31, Satoshi Naramoto23, Kazuhiko Nishitani23, Misato Ohtani8, Takashi Okamoto32, Masaki Okumura20, Jeremy Phillips4, Bernardo Pollak11, Anke Reinders33, Moritz Rövekamp18, Ryosuke Sano8, Shinichiro Sawa34, Marc W. Schmid18, Makoto Shirakawa2, Roberto Solano29, Alexander Spunde4, Noriyuki Suetsugu2, Sumio Sugano19, Akifumi Sugiyama2, Rui Sun2, Yutaka Suzuki19, Mizuki Takenaka35, Daisuke Takezawa36, Hirokazu Tomogane2, Masayuki Tsuzuki19, Takashi Ueda22, Masaaki Umeda8, John M. Ward33, Yuichiro Watanabe19, Kazufumi Yazaki2, Ryusuke Yokoyama23, Yoshihiro Yoshitake2, Izumi Yotsui, Sabine Zachgo9, Jeremy Schmutz4 
05 Oct 2017-Cell
TL;DR: Compared with other sequenced land plants, M. polymorpha exhibits low genetic redundancy in most regulatory pathways, with this portion of its genome resembling that predicted for the ancestral land plant.

774 citations


Journal ArticleDOI
23 Nov 2017-Nature
TL;DR: In this paper, the authors used genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer.
Abstract: Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.

774 citations


Journal ArticleDOI
07 Dec 2017-Nature
TL;DR: Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia.
Abstract: N6-methyladenosine (m6A) is an abundant internal RNA modification in both coding and non-coding RNAs that is catalysed by the METTL3-METTL14 methyltransferase complex. However, the specific role of these enzymes in cancer is still largely unknown. Here we define a pathway that is specific for METTL3 and is implicated in the maintenance of a leukaemic state. We identify METTL3 as an essential gene for growth of acute myeloid leukaemia cells in two distinct genetic screens. Downregulation of METTL3 results in cell cycle arrest, differentiation of leukaemic cells and failure to establish leukaemia in immunodeficient mice. We show that METTL3, independently of METTL14, associates with chromatin and localizes to the transcriptional start sites of active genes. The vast majority of these genes have the CAATT-box binding protein CEBPZ present at the transcriptional start site, and this is required for recruitment of METTL3 to chromatin. Promoter-bound METTL3 induces m6A modification within the coding region of the associated mRNA transcript, and enhances its translation by relieving ribosome stalling. We show that genes regulated by METTL3 in this way are necessary for acute myeloid leukaemia. Together, these data define METTL3 as a regulator of a chromatin-based pathway that is necessary for maintenance of the leukaemic state and identify this enzyme as a potential therapeutic target for acute myeloid leukaemia.

705 citations


Journal ArticleDOI
05 Oct 2017-Cell
TL;DR: It is demonstrated that CRISPR/Cas9 genome editing of promoters generates diverse cis-regulatory alleles that provide beneficial quantitative variation for breeding that provide a foundation for dissecting complex relationships between gene-reg regulatory changes and control of quantitative traits.

673 citations


Journal ArticleDOI
TL;DR: The progress of the HPO project is reviewed, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.
Abstract: Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human Phenotype Ontology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

Journal ArticleDOI
TL;DR: This work posits that ROS do not operate as one single biochemical entity, but as diverse secondary messengers in cancer cells, and cautions against therapeutic strategies to increase ROS at a global level.

Journal ArticleDOI
19 Oct 2017-Cell
TL;DR: It is discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns and forms a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties.


Journal ArticleDOI
TL;DR: It is shown that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G), and the findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America.
Abstract: Plants evolved so that their flowering is triggered by seasonal changes in day length. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.

Journal ArticleDOI
29 Jun 2017-Cell
TL;DR: It is shown that the two most active ERV families, IAP and MusD/ETn, are major targets and are strongly inhibited by tRFs in retrotransposition assays, and tRF-targeting is a potentially highly conserved mechanism of small RNA-mediated transposon control.

Journal ArticleDOI
TL;DR: It is shown that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases and applies it to an atlas of human enhancers to show that the fitness consequences at enhancers depend on cell type, tissue specificity, and constraints at associated promoters.
Abstract: Many genetic variants that influence phenotypes of interest are located outside of protein-coding genes, yet existing methods for identifying such variants have poor predictive power. Here we introduce a new computational method, called LINSIGHT, that substantially improves the prediction of noncoding nucleotide sites at which mutations are likely to have deleterious fitness consequences, and which, therefore, are likely to be phenotypically important. LINSIGHT combines a generalized linear model for functional genomic data with a probabilistic model of molecular evolution. The method is fast and highly scalable, enabling it to exploit the 'big data' available in modern genomics. We show that LINSIGHT outperforms the best available methods in identifying human noncoding variants associated with inherited diseases. In addition, we apply LINSIGHT to an atlas of human enhancers and show that the fitness consequences at enhancers depend on cell type, tissue specificity, and constraints at associated promoters.

Journal ArticleDOI
05 Oct 2017-Cell
TL;DR: An unexpected cortical organizing principle is discovered: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas aredominated by input-modifying somatostatin-positiveinterneuron areas.

Posted ContentDOI
20 Apr 2017-bioRxiv
TL;DR: In this paper, the assembly and annotation of maize, a genetic and agricultural model species, using Single Molecule Real-Time (SMRT) sequencing and high-resolution optical mapping is reported.
Abstract: Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate elucidation of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here, we report the assembly and annotation of maize, a genetic and agricultural model species, using Single Molecule Real-Time (SMRT) sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and significant improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed over 130,000 intact transposable elements (TEs), allowing us to identify TE lineage expansions unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by SMRT sequencing. In addition, comparative optical mapping of two other inbreds revealed a prevalence of deletions in the low gene density region and maize lineage-specific genes.

Journal ArticleDOI
01 Jun 2017-Cell
TL;DR: Exploiting natural and engineered alleles for multiple family members, a continuum of inflorescence complexity was achieved that allowed breeding of higher-yielding hybrids and characterizing and neutralizing similar cases of negative epistasis could improve productivity in many agricultural organisms.

Journal ArticleDOI
01 Nov 2017-Neuron
TL;DR: The experiences of the BRAin Initiative Cell Census Consortium, ten pilot projects funded by the U.S. BRAIN Initiative, lay the foundation for a larger and longer-term effort to generate whole-brain cell atlases in species including mice and humans.

Journal ArticleDOI
TL;DR: The clinical utility of the previously published risk stratification model for solitary fibrous tumors is confirmed and the inclusion of necrosis as a fourth variable in the model is supported to further improve the risk score.

Posted ContentDOI
24 Mar 2017-bioRxiv
TL;DR: STAR-Fusion is described, a method that is both fast and accurate in identifying fusion transcripts from RNA-Seq data, and it is shown that it has superior performance compared to popular alternative fusion detection methods.
Abstract: Motivation Fusion genes created by genomic rearrangements can be potent drivers of tumorigenesis. However, accurate identification of functionally fusion genes from genomic sequencing requires whole genome sequencing, since exonic sequencing alone is often insufficient. Transcriptome sequencing provides a direct, highly effective alternative for capturing molecular evidence of expressed fusions in the precision medicine pipeline, but current methods tend to be inefficient or insufficiently accurate, lacking in sensitivity or predicting large numbers of false positives. Here, we describe STAR-Fusion, a method that is both fast and accurate in identifying fusion transcripts from RNA-Seq data. Results We benchmarked STAR-Fusion’s fusion detection accuracy using both simulated and genuine Illumina paired-end RNA-Seq data, and show that it has superior performance compared to popular alternative fusion detection methods. Availability and implementation STAR-Fusion is implemented in Perl, freely available as open source software at http://star-fusion.github.io, and supported on Linux.

Journal ArticleDOI
TL;DR: An experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues resulted in novel transcript models for 3,574 and 561 gene loci, respectively, which enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential.
Abstract: Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.

Journal ArticleDOI
TL;DR: Significance The demonstration of a robust neurogenesis program in the adult gut and the existence of an enteric neural precursor cell (ENPC) responsible for the same has profound biological and clinical implications.
Abstract: According to current dogma, there is little or no ongoing neurogenesis in the fully developed adult enteric nervous system. This lack of neurogenesis leaves unanswered the question of how enteric neuronal populations are maintained in adult guts, given previous reports of ongoing neuronal death. Here, we confirm that despite ongoing neuronal cell loss because of apoptosis in the myenteric ganglia of the adult small intestine, total myenteric neuronal numbers remain constant. This observed neuronal homeostasis is maintained by new neurons formed in vivo from dividing precursor cells that are located within myenteric ganglia and express both Nestin and p75NTR, but not the pan-glial marker Sox10. Mutation of the phosphatase and tensin homolog gene in this pool of adult precursors leads to an increase in enteric neuronal number, resulting in ganglioneuromatosis, modeling the corresponding disorder in humans. Taken together, our results show significant turnover and neurogenesis of adult enteric neurons and provide a paradigm for understanding the enteric nervous system in health and disease.

Journal ArticleDOI
Shuhei Noguchi, Takahiro Arakawa, Shiro Fukuda, Masaaki Furuno  +182 moreInstitutions (45)
TL;DR: In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE coupled with single-molecule sequencing to represent the consequence of transcriptional regulation in each analyzed state of mammalian cells.
Abstract: In the FANTOM5 project, transcription initiation events across the human and mouse genomes were mapped at a single base-pair resolution and their frequencies were monitored by CAGE (Cap Analysis of Gene Expression) coupled with single-molecule sequencing. Approximately three thousands of samples, consisting of a variety of primary cells, tissues, cell lines, and time series samples during cell activation and development, were subjected to a uniform pipeline of CAGE data production. The analysis pipeline started by measuring RNA extracts to assess their quality, and continued to CAGE library production by using a robotic or a manual workflow, single molecule sequencing, and computational processing to generate frequencies of transcription initiation. Resulting data represents the consequence of transcriptional regulation in each analyzed state of mammalian cells. Non-overlapping peaks over the CAGE profiles, approximately 200,000 and 150,000 peaks for the human and mouse genomes, were identified and annotated to provide precise location of known promoters as well as novel ones, and to quantify their activities.

Journal ArticleDOI
TL;DR: It is found that nearly all trisomic cell lines grew poorly in vitro and as xenografts, relative to genetically matched euploid cells, and the activation of several oncogenic pathways failed to alleviate the fitness defect induced by aneuploidy.

Journal ArticleDOI
TL;DR: Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at unprecedented resolution and throughput, enabling the comparison of human and mouse biology at the molecular level.
Abstract: Cross-species comparisons of genomes, transcriptomes and gene regulation are now feasible at unprecedented resolution and throughput, enabling the comparison of human and mouse biology at the molecular level. Insights have been gained into the degree of conservation between human and mouse at the level of not only gene expression but also epigenetics and inter-individual variation. However, a number of limitations exist, including incomplete transcriptome characterization and difficulties in identifying orthologous phenotypes and cell types, which are beginning to be addressed by emerging technologies. Ultimately, these comparisons will help to identify the conditions under which the mouse is a suitable model of human physiology and disease, and optimize the use of animal models.

Journal ArticleDOI
TL;DR: It is shown that PKC-δ-expressing central amygdala neurons are essential for the synaptic plasticity underlying learning in the lateral amygdala, as they convey information about the unconditioned stimulus to lateral amygdala neurons during fear conditioning.
Abstract: Experience-driven synaptic plasticity in the lateral amygdala is thought to underlie the formation of associations between sensory stimuli and an ensuing threat. However, how the central amygdala participates in such a learning process remains unclear. Here we show that PKC-δ-expressing central amygdala neurons are essential for the synaptic plasticity underlying learning in the lateral amygdala, as they convey information about the unconditioned stimulus to lateral amygdala neurons during fear conditioning.

Journal ArticleDOI
TL;DR: The remarkable, and often perplexing, therapeutic effects of BET bromodomain inhibition in cancer are discussed.
Abstract: Cancer cells are often hypersensitive to the targeting of transcriptional regulators, which may reflect the deregulated gene expression programs that underlie malignant transformation. One of the most prominent transcriptional vulnerabilities in human cancer to emerge in recent years is the bromodomain and extraterminal (BET) family of proteins, which are coactivators that link acetylated transcription factors and histones to the activation of RNA polymerase II. Despite unclear mechanisms underlying the gene specificity of BET protein function, small molecules targeting these regulators preferentially suppress the transcription of cancer-promoting genes. As a consequence, BET inhibitors elicit anticancer activity in numerous malignant contexts at doses that can be tolerated by normal tissues, a finding supported by animal studies and by phase I clinical trials in human cancer patients. In this review, we will discuss the remarkable, and often perplexing, therapeutic effects of BET bromodomain inhibition in cancer.