scispace - formally typeset
Search or ask a question
Institution

Cold Spring Harbor Laboratory

NonprofitCold Spring Harbor, New York, United States
About: Cold Spring Harbor Laboratory is a nonprofit organization based out in Cold Spring Harbor, New York, United States. It is known for research contribution in the topics: Gene & Genome. The organization has 3772 authors who have published 6603 publications receiving 1010873 citations. The organization is also known as: CSHL.
Topics: Gene, Genome, RNA, DNA, Cancer


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits and the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin.
Abstract: Whereas breeders have exploited diversity in maize for yield improvements, there has been limited progress in using beneficial alleles in undomesticated varieties. Characterizing standing variation in this complex genome has been challenging, with only a small fraction of it described to date. Using a population genetics scoring model, we identified 55 million SNPs in 103 lines across pre-domestication and domesticated Zea mays varieties, including a representative from the sister genus Tripsacum. We find that structural variations are pervasive in the Z. mays genome and are enriched at loci associated with important traits. By investigating the drivers of genome size variation, we find that the larger Tripsacum genome can be explained by transposable element abundance rather than an allopolyploid origin. In contrast, intraspecies genome size variation seems to be controlled by chromosomal knob content. There is tremendous overlap in key gene content in maize and Tripsacum, suggesting that adaptations from Tripsacum (for example, perennialism and frost and drought tolerance) can likely be integrated into maize.

602 citations

Journal ArticleDOI
Keith Bradnam, Joseph Fass, Anton Alexandrov, Paul Baranay1, Michael Bechner, Inanc Birol2, Sébastien Boisvert3, Jarrod Chapman4, Guillaume Chapuis5, Guillaume Chapuis6, Rayan Chikhi5, Rayan Chikhi6, Hamidreza Chitsaz7, Wen-Chi Chou8, Jacques Corbeil3, Cristian Del Fabbro, Roderick R. Docking2, Richard Durbin9, Dent Earl10, Scott J. Emrich11, Pavel Fedotov, Nuno A. Fonseca12, Ganeshkumar Ganapathy13, Richard A. Gibbs14, Sante Gnerre15, Elenie Godzaridis3, Steve Goldstein, Matthias Haimel12, Giles Hall15, David Haussler10, Joseph B. Hiatt16, Isaac Ho4, Jason T. Howard13, Martin Hunt9, Shaun D. Jackman2, David B. Jaffe15, Erich D. Jarvis13, Huaiyang Jiang14, Sergey Kazakov, Paul J. Kersey12, Jacob O. Kitzman16, James R. Knight, Sergey Koren17, Tak-Wah Lam18, Dominique Lavenier19, Dominique Lavenier5, Dominique Lavenier6, François Laviolette3, Yingrui Li18, Zhenyu Li, Binghang Liu, Yue Liu14, Ruibang Luo18, Iain MacCallum15, Matthew D. MacManes20, Nicolas Maillet19, Nicolas Maillet6, Sergey Melnikov, Delphine Naquin6, Delphine Naquin19, Zemin Ning9, Thomas D. Otto9, Benedict Paten10, Octávio S. Paulo21, Adam M. Phillippy17, Francisco Pina-Martins21, Michael Place, Dariusz Przybylski15, Xiang Qin14, Carson Qu14, Filipe J. Ribeiro, Stephen Richards14, Daniel S. Rokhsar22, Daniel S. Rokhsar4, J. Graham Ruby23, J. Graham Ruby24, Simone Scalabrin, Michael C. Schatz25, David C. Schwartz, Alexey Sergushichev, Ted Sharpe15, Timothy I. Shaw8, Jay Shendure16, Yujian Shi, Jared T. Simpson9, Henry Song14, Fedor Tsarev, Francesco Vezzi26, Riccardo Vicedomini27, Bruno Vieira21, Jun Wang, Kim C. Worley14, Shuangye Yin15, Siu-Ming Yiu18, Jianying Yuan, Guojie Zhang, Hao Zhang, Shiguo Zhou, Ian F Korf 
TL;DR: The Assemblathon 2 as discussed by the authors presented a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and a snake) from 21 participating teams.
Abstract: Background: The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results: In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. (Continued on next page)

602 citations

Journal ArticleDOI
TL;DR: The identified mutation in Arabidopsis called fruitfull (ful-1), which abolishes elongation of the silique after fertilization, and the effect on fruit development, ful cauline leaves are broader than those of wild type and show a reduction in the number of internal cell layers, suggest that AGL8/FUL regulates the transcription of genes required for cellular differentiation during fruit and leaf development.
Abstract: Fruit morphogenesis is a process unique to flowering plants, and yet little is known about its developmental control. Following fertilization, fruits typically undergo a dramatic enlargement that is accompanied by differentiation of numerous distinct cell types. We have identified a mutation in Arabidopsis called fruitfull (ful-1), which abolishes elongation of the silique after fertilization. The ful-1 mutation is caused by the insertion of a DsE transposable enhancer trap element into the 5′ untranslated leader of the AGL8 MADS-box gene. βglucuronidase (GUS) reporter gene expression in the enhancer trap line is observed specifically in all cell layers of the valve tissue, but not in the replum, the septum or the seeds, and faithfully mimics RNA in situ hybridization data reported previously. The lack of coordinated growth of the fruit tissues leads to crowded seeds, a failure of dehiscence and, frequently, the premature rupture of the carpel valves. The primary defect of ful-1 fruits is within the valves, whose cells fail to elongate and differentiate. Stomata, which are frequent along the epidermis of wild-type valves, are completely eliminated in the ful mutant valves. In addition to the effect on fruit development, ful cauline leaves are broader than those of wild type and show a reduction in the number of internal cell layers. These data suggest that AGL8/FUL regulates the transcription of genes required for cellular differentiation during fruit and leaf development. SUMMARY

602 citations

Journal ArticleDOI
TL;DR: The clonal identification of multipotent precursor cells from the adult mouse pancreas is reported, which represent a previously unidentified adult intrinsic pancreatic precursor population and are a promising candidate for cell-based therapeutic strategies.
Abstract: Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages

598 citations

Journal ArticleDOI
TL;DR: It is found that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts, and motor cortex can thereby prepare the movement without prematurely causing it.
Abstract: Neural circuits must perform computations and then selectively output the results to other circuits. Yet synapses do not change radically at millisecond timescales. A key question then is: how is communication between neural circuits controlled? In motor control, brain areas directly involved in driving movement are active well before movement begins. Muscle activity is some readout of neural activity, yet it remains largely unchanged during preparation. Here we find that during preparation, while the monkey holds still, changes in motor cortical activity cancel out at the level of these population readouts. Motor cortex can thereby prepare the movement without prematurely causing it. Further, we found evidence that this mechanism also operates in dorsal premotor cortex, largely accounting for how preparatory activity is attenuated in primary motor cortex. Selective use of 'output-null' vs. 'output-potent' patterns of activity may thus help control communication to the muscles and between these brain areas.

598 citations


Authors

Showing all 3800 results

NameH-indexPapersCitations
Phillip A. Sharp172614117126
Gregory J. Hannon165421140456
Ian A. Wilson15897198221
Marco A. Marra153620184684
Michael E. Greenberg148316114317
Tom Maniatis143318299495
Detlef Weigel14251684670
Kim Nasmyth14229459231
Arnold J. Levine139485116005
Joseph E. LeDoux13947891500
Gerald R. Fink13831670868
Ramnik J. Xavier138597101879
Harold E. Varmus13749676320
David A. Jackson136109568352
Scott W. Lowe13439689376
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

99% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

98% related

European Bioinformatics Institute
10.5K papers, 999.6K citations

96% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

96% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202239
2021292
2020350
2019315
2018288