scispace - formally typeset
Search or ask a question
Institution

École Normale Supérieure

OtherParis, Île-de-France, France
About: École Normale Supérieure is a other organization based out in Paris, Île-de-France, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 68439 authors who have published 99414 publications receiving 3092008 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Dynamic aspects of interactions between astrocytes, neurons and the vasculature have recently been in the neuroscience spotlight and this intercellular communication between glia has implications for neuroglial and gliovascular interactions.
Abstract: Dynamic aspects of interactions between astrocytes, neurons and the vasculature have recently been in the neuroscience spotlight. It has emerged that not only neurons but also astrocytes are organized into networks. Whereas neuronal networks exchange information through electrical and chemical synapses, astrocytes are interconnected through gap junction channels that are regulated by extra- and intracellular signals and allow exchange of information. This intercellular communication between glia has implications for neuroglial and gliovascular interactions and hence has added another level of complexity to our understanding of brain function.

682 citations

Journal ArticleDOI
TL;DR: A unifying expression is proposed that gathers the majority of PDE-based formalisms for vector-valued image regularization into a single generic anisotropic diffusion equation, allowing us to implement the authors' regularization framework with accuracy by taking the local filtering properties of the proposed equations into account.
Abstract: In this paper, we focus on techniques for vector-valued image regularization, based on variational methods and PDE. Starting from the study of PDE-based formalisms previously proposed in the literature for the regularization of scalar and vector-valued data, we propose a unifying expression that gathers the majority of these previous frameworks into a single generic anisotropic diffusion equation. On one hand, the resulting expression provides a simple interpretation of the regularization process in terms of local filtering with spatially adaptive Gaussian kernels. On the other hand, it naturally disassembles any regularization scheme into the smoothing process itself and the underlying geometry that drives the smoothing. Thus, we can easily specialize our generic expression into different regularization PDE that fulfill desired smoothing behaviors, depending on the considered application: image restoration, inpainting, magnification, flow visualization, etc. Specific numerical schemes are also proposed, allowing us to implement our regularization framework with accuracy by taking the local filtering properties of the proposed equations into account. Finally, we illustrate the wide range of applications handled by our selected anisotropic diffusion equations with application results on color images.

680 citations

Journal ArticleDOI
TL;DR: This paper quantifies the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote and shows that CS represents a competitive alternative to state- of- the-art digital wavelet transform (DWT)-basedECG compression solutions in the context of WBSn-based ECG monitoring systems.
Abstract: Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWT-based counterpart for “good” reconstruction quality.

680 citations

Journal ArticleDOI
01 Sep 1997-Neuron
TL;DR: It is shown that two types of inhibitory neurons in the cerebellar cortex fire spontaneously and regularly in the absence of synaptic input but generate an irregular firing pattern in the presence of tonic synaptic inhibition, suggesting that the time window for synaptic integration is a dynamic variable modulated by the level of Tonic inhibition.

679 citations


Authors

Showing all 68584 results

NameH-indexPapersCitations
Didier Raoult1733267153016
Simon Baron-Cohen172773118071
Andrew Zisserman167808261717
Edward T. Bullmore165746112463
H. Eugene Stanley1541190122321
Pierre Bourdieu153592194586
Gerald M. Rubin152382115248
Stanislas Dehaene14945686539
Melody A. Swartz1481304103753
J. Fraser Stoddart147123996083
Jean-François Cardoso145373115144
Richard S. J. Frackowiak142309100726
Cordelia Schmid135464103925
Jean Tirole134439103279
Ion Stoica13349394937
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

University of Paris
174.1K papers, 5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022382
20213,853
20204,300
20194,313
20184,336