scispace - formally typeset
Search or ask a question
Institution

École Normale Supérieure

OtherParis, Île-de-France, France
About: École Normale Supérieure is a other organization based out in Paris, Île-de-France, France. It is known for research contribution in the topics: Population & Catalysis. The organization has 68439 authors who have published 99414 publications receiving 3092008 citations.


Papers
More filters
Posted Content
TL;DR: The fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks are elaborated.
Abstract: The future of mobile communications looks exciting with the potential new use cases and challenging requirements of future 6th generation (6G) and beyond wireless networks. Since the beginning of the modern era of wireless communications, the propagation medium has been perceived as a randomly behaving entity between the transmitter and the receiver, which degrades the quality of the received signal due to the uncontrollable interactions of the transmitted radio waves with the surrounding objects. The recent advent of reconfigurable intelligent surfaces in wireless communications enables, on the other hand, network operators to control the scattering, reflection, and refraction characteristics of the radio waves, by overcoming the negative effects of natural wireless propagation. Recent results have revealed that reconfigurable intelligent surfaces can effectively control the wavefront, e.g., the phase, amplitude, frequency, and even polarization, of the impinging signals without the need of complex decoding, encoding, and radio frequency processing operations. Motivated by the potential of this emerging technology, the present article is aimed to provide the readers with a detailed overview and historical perspective on state-of-the-art solutions, and to elaborate on the fundamental differences with other technologies, the most important open research issues to tackle, and the reasons why the use of reconfigurable intelligent surfaces necessitates to rethink the communication-theoretic models currently employed in wireless networks. This article also explores theoretical performance limits of reconfigurable intelligent surface-assisted communication systems using mathematical techniques and elaborates on the potential use cases of intelligent surfaces in 6G and beyond wireless networks.

463 citations

Journal ArticleDOI
TL;DR: A spatial iterative algorithm for electromagnetic imaging based on a Newton-Kantorovich procedure for the reconstruction of the complex permittivity of inhomogeneous lossy dielectric objects with arbitrary shape was proposed in this paper.
Abstract: The authors propose a spatial iterative algorithm for electromagnetic imaging based on a Newton-Kantorovich procedure for the reconstruction of the complex permittivity of inhomogeneous lossy dielectric objects with arbitrary shape. Starting from integral representation of the electric field and using the moment method, this technique has been developed for 2-D (for TM and TE polarization cases) objects as well as for 3-D objects. Its performance has been compared with spectral techniques of classical diffraction tomography, the modified Newton method, and the pseudo-inverse method. >

462 citations

Journal ArticleDOI
01 Jun 1988
TL;DR: A model which integrates botanical knowledge of the architecture of the trees: how they grow, how they occupy space, where and how leaves, flowers or fruits are located, etc is presented.
Abstract: Some very impressive results have been obtained in the past few years in plants and trees image synthesis. Some algorithms are largely based on the irregularity and fuzziness of the objects, and use fractals, graftals or particle systems. Others focus on the branching pattern of the trees with emphasis on morphology. Our concern here is the faithfulness of the models to the botanical nature of trees and plants. We present a model which integrates botanical knowledge of the architecture of the trees: how they grow, how they occupy space, where and how leaves, flowers or fruits are located, etc. The very first interest of the model we propose is its great richness: the same procedural methods can produce "plants" as different as weeping willows, fir trees, cedar trees, frangipani trees, poplars, pine trees, wild cherry trees, herbs, etc. Another very important benefit one can derive from the model is the integration of time which enables viewing the aging of a tree (possibility to get different pictures of the same tree at different ages, accurate simulation of the death of leaves and branches for example). The ease to integrate physical parameters such as wind, the incidence of factors such as insects attacks, use of fertilizers, plantation density, and so on makes it a useful tool for agronomy or botany.

462 citations

Journal ArticleDOI
TL;DR: A rigorous construction of the microscopic population process that captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by the trait values of each individual, and interactions between individuals is presented.

462 citations

Book ChapterDOI
23 Jun 2009
TL;DR: Aron is a freely available library dedicated to the static analysis of the numerical variables of programs by abstract interpretation, and its goal is to provide analysis implementers with ready-to-use numerical abstractions under a unified API.
Abstract: This article describes Apron , a freely available library dedicated to the static analysis of the numerical variables of programs by abstract interpretation. Its goal is threefold: provide analysis implementers with ready-to-use numerical abstractions under a unified API, encourage the research in numerical abstract domains by providing a platform for integration and comparison, and provide teaching and demonstration tools to disseminate knowledge on abstract interpretation.

462 citations


Authors

Showing all 68584 results

NameH-indexPapersCitations
Didier Raoult1733267153016
Simon Baron-Cohen172773118071
Andrew Zisserman167808261717
Edward T. Bullmore165746112463
H. Eugene Stanley1541190122321
Pierre Bourdieu153592194586
Gerald M. Rubin152382115248
Stanislas Dehaene14945686539
Melody A. Swartz1481304103753
J. Fraser Stoddart147123996083
Jean-François Cardoso145373115144
Richard S. J. Frackowiak142309100726
Cordelia Schmid135464103925
Jean Tirole134439103279
Ion Stoica13349394937
Network Information
Related Institutions (5)
Centre national de la recherche scientifique
382.4K papers, 13.6M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

95% related

University of Paris
174.1K papers, 5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Pierre-and-Marie-Curie University
56.1K papers, 2.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202340
2022382
20213,853
20204,300
20194,313
20184,336