scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
01 Jan 1999-Tellus B
TL;DR: In this paper, the utility of a diffusive picture for the near surface poleward flux of heat is emphasized, as is the extent to which a full closure theory for the troposphere, including the interior potential vorticity fluxes, must revolve around this theory for heat flux.
Abstract: Eddy length scales, eddy velocity scales, and the amplitude of eddy fluxes in the mid-latitude troposphere are discussed, primarily from the qualitative perspective provided by studies of quasi-geostrophic turbulence. The utility of a diffusive picture for the near surface poleward flux of heat is emphasized, as is the extent to which a full closure theory for the troposphere, including the interior potential vorticity fluxes, must revolve around this theory for the heat flux. A central problem in general circulation theory is then to determine which factors control the horizontal diffusivity near the surface. The baroclinic eddy production problem has distinctive features that make it stand out from other inhomogeneous turbulence problems such as Benard convection and laboratory shear flows, the crucial point being that there can be scale separation between the eddies and the scale of the mean flow inhomogeneity in the direction of the relevant transport. This scale separation makes diffusive closures more compelling. In addition, it allows one to compute diffusivities from models of homogeneous turbulence. DOI: 10.1034/j.1600-0889.1999.00006.x

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanisms for the amplitude modulation of ENSO using a 2000-yr preindustrial control integration from the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1).
Abstract: The amplitude of El Nino–Southern Oscillation (ENSO) displays pronounced interdecadal modulations in observations. The mechanisms for the amplitude modulation are investigated using a 2000-yr preindustrial control integration from the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). ENSO amplitude modulation is highly correlated with the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV), which features equatorial zonal dipoles in sea surface temperature (SST) and subsurface temperature along the thermocline. Experiments with an ocean general circulation model indicate that both interannual and decadal-scale wind variability are required to generate decadal-scale tropical Pacific temperature anomalies at the sea surface and along the thermocline. Even a purely interannual and sinusoidal wind forcing can produce substantial decadal-scale effects in the equatorial Pacific, with SST cooling in the west, subsurface warming along...

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a comprehensive climate model to explore the impact of various climate change forcing agents on the North Atlantic thermohaline circulation (THC) in the 21st century, with little change in the 20th century.
Abstract: [1] In many climate model simulations using realistic, time-varying climate change forcing agents for the 20th and 21st centuries, the North Atlantic thermohaline circulation (THC) weakens in the 21st century, with little change in the 20th century. Here we use a comprehensive climate model to explore the impact of various climate change forcing agents on the THC. We conduct ensembles of integrations with subsets of climate change forcing agents. Increasing greenhouse gases – in isolation – produce a significant THC weakening in the late 20th century, but this change is partially offset by increasing anthropogenic aerosols, which tend to strengthen the THC. The competition between increasing greenhouse gases and anthropogenic aerosols thus produces no significant THC change in our 20th century simulations when all climate forcings are included. The THC weakening becomes significant several decades into the 21st century, when the effects of increasing greenhouse gases overwhelm the aerosol effects.

90 citations

Journal ArticleDOI
TL;DR: This article collected millennial-length simulations of coupled climate models and showed that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations, and that global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid-latitudes.
Abstract: The methods to quantify equilibrium climate sensitivity are still debated. We collect millennial‐length simulations of coupled climate models and show that the global mean equilibrium warming is higher than those obtained using extrapolation methods from shorter simulations. Specifically, 27 simulations with 15 climate models forced with a range of CO2 concentrations show a median 17% larger equilibrium warming than estimated from the first 150 years of the simulations. The spatial patterns of radiative feedbacks change continuously, in most regions reducing their tendency to stabilizing the climate. In the equatorial Pacific, however, feedbacks become more stabilizing with time. The global feedback evolution is initially dominated by the tropics, with eventual substantial contributions from the mid‐latitudes. Time‐dependent feedbacks underscore the need of a measure of climate sensitivity that accounts for the degree of equilibration, so that models, observations, and paleo proxies can be adequately compared and aggregated to estimate future warming. Key points 27 simulations of 15 general circulation models are integrated to near equilibrium All models simulate a higher equilibrium warming than predicted by using extrapolation methods Tropics and mid‐latitudes dominate the change of the feedback parameter on different timescales on millennial timescales

90 citations

Journal ArticleDOI
TL;DR: The results of aerosol forecast during the ACE-Asia field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS), are presented in this paper.
Abstract: We present the results of aerosol forecast during the Aerosol Characterization Experiment (ACE-Asia) field experiment in spring 2001, using the Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model and the meteorological forecast fields from the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The aerosol model forecast provides direct information on aerosol optical thickness and concentrations, enabling effective flight planning, while feedbacks from measurements constantly evaluate the model, making successful model improvements. We verify the model forecast skill by comparing model predicted total aerosol extinction, dust, sulfate, and SO2 concentrations with those quantities measured by the C-130 aircraft during the ACE-Asia intensive operation period. The GEOS DAS meteorological forecast system shows excellent skills in predicting winds, relative humidity, and temperature for the ACE-Asia experiment area as well as for each individual flight, with skill scores usually above 0.7. The model is also skillful in forecast of pollution aerosols, with most scores above 0.5. The model correctly predicted the dust outbreak events and their trans-Pacific transport, but it constantly missed the high dust concentrations observed in the boundary layer. We attribute this missing dust source to the desertification regions in the Inner Mongolia Province in China, which have developed in recent years but were not included in the model during forecasting. After incorporating the desertification sources, the model is able to reproduce the observed high dust concentrations at low altitudes over the Yellow Sea. Two key elements for a successful aerosol model forecast are correct source locations that determine where the emissions take place, and realistic forecast winds and convection that determine where the aerosols are transported. We demonstrate that our global model can not only account for the large-scale intercontinental transport, but also produce the small-scale spatial and temporal variations that are adequate for aircraft measurements planning.

90 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887