scispace - formally typeset
Search or ask a question

Showing papers by "Geophysical Fluid Dynamics Laboratory published in 2012"


Journal ArticleDOI
TL;DR: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance the authors' knowledge of climate variability and climate change.
Abstract: The fifth phase of the Coupled Model Intercomparison Project (CMIP5) will produce a state-of-the- art multimodel dataset designed to advance our knowledge of climate variability and climate change. Researchers worldwide are analyzing the model output and will produce results likely to underlie the forthcoming Fifth Assessment Report by the Intergovernmental Panel on Climate Change. Unprecedented in scale and attracting interest from all major climate modeling groups, CMIP5 includes “long term” simulations of twentieth-century climate and projections for the twenty-first century and beyond. Conventional atmosphere–ocean global climate models and Earth system models of intermediate complexity are for the first time being joined by more recently developed Earth system models under an experiment design that allows both types of models to be compared to observations on an equal footing. Besides the longterm experiments, CMIP5 calls for an entirely new suite of “near term” simulations focusing on recent decades...

12,384 citations


Journal ArticleDOI
TL;DR: In this article, a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use is presented.
Abstract: [1] Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1°) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

1,104 citations


Journal ArticleDOI
TL;DR: This article presented results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)] with an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels.
Abstract: The authors present results for simulated climate and climate change from a newly developed high-resolution global climate model [Geophysical Fluid Dynamics Laboratory Climate Model version 2.5 (GFDL CM2.5)]. The GFDL CM2.5 has an atmospheric resolution of approximately 50 km in the horizontal, with 32 vertical levels. The horizontal resolution in the ocean ranges from 28 km in the tropics to 8 km at high latitudes, with 50 vertical levels. This resolution allows the explicit simulation of some mesoscale eddies in the ocean, particularly at lower latitudes.Analyses are presented based on the output of a 280-yr control simulation; also presented are results based on a 140-yr simulation in which atmospheric CO2 increases at 1% yr−1 until doubling after 70 yr.Results are compared to GFDL CM2.1, which has somewhat similar physics but a coarser resolution. The simulated climate in CM2.5 shows marked improvement over many regions, especially the tropics, including a reduction in the double ITCZ and an i...

495 citations


Journal ArticleDOI
TL;DR: Estimates from the current generation of chemistry-climate models with RCP emissions project improved air quality over the next century relative to those using the IPCC SRES scenarios, but confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O(3) and SOA.
Abstract: Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative Concentration Pathway (RCP) scenarios assume uniformly an aggressive reduction, of air pollutant emissions. New estimates from the current generation of chemistry–climate models with RCP emissions thus project improved air quality over the next century relative to those using the IPCC SRES scenarios. These two sets of projections likely bracket possible futures. We find that uncertainty in emission-driven changes in air quality is generally greater than uncertainty in climate-driven changes. Confidence in air quality projections is limited by the reliability of anthropogenic emission trajectories and the uncertainties in regional climate responses, feedbacks with the terrestrial biosphere, and oxidation pathways affecting O3 and SOA.

405 citations


Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the accuracy of cloud water content (CWC) and water vapor mixing ratio (H2O) outputs from 19 climate models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), and assess improvements relative to their counterparts for the earlier CMIP3.
Abstract: [1] Using NASA's A-Train satellite measurements, we evaluate the accuracy of cloud water content (CWC) and water vapor mixing ratio (H2O) outputs from 19 climate models submitted to the Phase 5 of Coupled Model Intercomparison Project (CMIP5), and assess improvements relative to their counterparts for the earlier CMIP3. We find more than half of the models show improvements from CMIP3 to CMIP5 in simulating column-integrated cloud amount, while changes in water vapor simulation are insignificant. For the 19 CMIP5 models, the model spreads and their differences from the observations are larger in the upper troposphere (UT) than in the lower or middle troposphere (L/MT). The modeled mean CWCs over tropical oceans range from ~3% to ~15× of the observations in the UT and 40% to 2× of the observations in the L/MT. For modeled H2Os, the mean values over tropical oceans range from ~1% to 2× of the observations in the UT and within 10% of the observations in the L/MT. The spatial distributions of clouds at 215 hPa are relatively well-correlated with observations, noticeably better than those for the L/MT clouds. Although both water vapor and clouds are better simulated in the L/MT than in the UT, there is no apparent correlation between the model biases in clouds and water vapor. Numerical scores are used to compare different model performances in regards to spatial mean, variance and distribution of CWC and H2O over tropical oceans. Model performances at each pressure level are ranked according to the average of all the relevant scores for that level. © 2012. American Geophysical Union.

331 citations


Journal ArticleDOI
TL;DR: In this article, the authors investigate self-aggregation in a nonrotating, three-dimensional cloud-resolving model on a square domain without large-scale forcing and find that selfaggregation is sensitive not only to the domain size, but also to the horizontal resolution.
Abstract: In models of radiative–convective equilibrium it is known that convection can spontaneously aggregate into one single localized moist region if the domain is large enough. The large changes in the mean climate state and radiative fluxes accompanying this self-aggregation raise questions as to what simulations at lower resolutions with parameterized convection, in similar homogeneous geometries, should be expected to produce to be considered successful in mimicking a cloud-resolving model.The authors investigate this self-aggregation in a nonrotating, three-dimensional cloud-resolving model on a square domain without large-scale forcing. It is found that self-aggregation is sensitive not only to the domain size, but also to the horizontal resolution. With horizontally homogeneous initial conditions, convective aggregation only occurs on domains larger than about 200km and with resolutions coarser than about 2km in the model examined. The system exhibits hysteresis, so that with aggregated initial c...

284 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed boundary layer climatology over Europe and the continental U.S. using a measure of boundary layer height based on the bulk Richardson number, which is calculated from radiosonde observations, a reanalysis that assimilates observations, and two contemporary climate models that do not.
Abstract: [1] Although boundary layer processes are important in climate, weather and air quality, boundary layer climatology has received little attention, partly for lack of observational data sets. We analyze boundary layer climatology over Europe and the continental U.S. using a measure of boundary layer height based on the bulk Richardson number. Seasonal and diurnal variations during 1981–2005 are estimated from radiosonde observations, a reanalysis that assimilates observations, and two contemporary climate models that do not. Data limitations in vertical profiles introduce height uncertainties that can exceed 50% for shallow boundary layers (<1 km) but are generally <20% for deeper boundary layers. Climatological heights are typically <1 km during daytime and <0.5 km at night over both regions. Seasonal patterns for daytime and nighttime differ; daytime heights are larger in summer than winter, but nighttime heights are larger in winter. The four data sets show similar patterns of spatial and seasonal variability but with biases that vary spatially, seasonally, and diurnally. Compared with radiosonde observations, the reanalysis and the climate models produce deeper layers due to difficulty simulating stable conditions. The higher-time-resolution reanalysis reveals the diurnal cycle in height, with maxima in the afternoon, and with amplitudes that vary seasonally (larger in summer) and regionally (larger over western U.S. and southern Europe). The lower-time-resolution radiosonde data and climate model simulations capture diurnal variations better over Europe than over the U.S., due to differences in local sampling times.

252 citations


Journal ArticleDOI
TL;DR: In this paper, the authors consider the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties.
Abstract: The properties of clouds that may be observed by satellite instruments, such as optical depth and cloud top pressure, are only loosely related to the way clouds m-e represented in models of the atmosphere. One way to bridge this gap is through "instrument simulators," diagnostic tools that map the model representation to synthetic observations so that differences between simulator output and observations can be interpreted unambiguously as model error. But simulators may themselves be restricted by limited information available from the host model or by internal assumptions. This paper considers the extent to which instrument simulators are able to capture essential differences between MODIS and ISCCP, two similar but independent estimates of cloud properties. The authors review the measurements and algorithms underlying these two cloud climatologies, introduce a MODIS simulator, and detail data sets developed for comparison with global models using ISCCP and MODIS simulators, In nature MODIS observes less mid-level doudines!> than ISCCP, consistent with the different methods used to determine cloud top pressure; aspects of this difference are reproduced by the simulators running in a climate modeL But stark differences between MODIS and ISCCP observations of total cloudiness and the distribution of cloud optical thickness can be traced to different approaches to marginal pixels, which MODIS excludes and ISCCP treats as homogeneous. These pixels, which likely contain broken clouds, cover about 15 k of the planet and contain almost all of the optically thinnest clouds observed by either instrument. Instrument simulators can not reproduce these differences because the host model does not consider unresolved spatial scales and so can not produce broken pixels. Nonetheless, MODIS and ISCCP observation are consistent for all but the optically-thinnest clouds, and models can be robustly evaluated using instrument simulators by excluding ambiguous observations.

241 citations


Journal ArticleDOI
TL;DR: In this article, a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models.
Abstract: [1] The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-h average (MDA8) ozone to ∼70–86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20–40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60–75 ppbv. At high-elevation western U.S. sites, the 25th–75th percentile of the stratospheric contribution is 15–25 ppbv when observed MDA8 ozone is 60–70 ppbv, and increases to ∼17–40 ppbv for the 70–85 ppbv range. These estimates, up to 2–3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60–70 ppbv range were to be adopted.

237 citations


Journal ArticleDOI
TL;DR: In this article, a global high-resolution (50 50 50 km 2 ) chemistry-climate model (GFDL AM3) with full stratosphere-troposphere chemistry nudged to reanalysis winds successfully reproduces observed sharp ozone gradients above California, including interleaving and mixing of Asian pollution and stratospheric air associated with complex interactions of midlatitude cyclone air streams.
Abstract: and satellite measurements in May–June 2010 with a new global high-resolution (50 50 km 2 ) chemistry-climate model (GFDL AM3). We find that AM3 with full stratosphere-troposphere chemistry nudged to reanalysis winds successfully reproduces observed sharp ozone gradients above California, including the interleaving and mixing of Asian pollution and stratospheric air associated with complex interactions of midlatitude cyclone air streams. Asian pollution descends isentropically behind cold fronts; at 800 hPa a maximum enhancement to ozone occurs over the southwestern U.S., including the densely populated Los Angeles Basin. During strong episodes, Asian emissions can contribute 8–15 ppbv ozone in the model on days when observed daily maximum 8-h average ozone (MDA8 O3) exceeds 60 ppbv. We find that in the absence of Asian anthropogenic emissions, 20% of MDA8 O3 exceedances of 60 ppbv in the model would not have occurred in the southwestern USA. For a 75 ppbv threshold, that statistic increases to 53%. Our analysis indicates the potential for Asian emissions to contribute to high-O3 episodes over the high-elevation western USA, with implications for attaining more stringent ozone standards in this region. We further demonstrate a proof-of-concept approach using satellite CO column measurements as a qualitative early warning indicator to forecast Asian ozone pollution events in the western U.S. with lead times of 1–3 days.

230 citations


Journal ArticleDOI
TL;DR: In this paper, a new chemical removal method was used to measure hydroxyl (OH) in a California forest environment using laser-induced fluorescence in low pressure detection chambers (called Fluorescence Assay with Gas Expansion (FAGE)) using the Penn State Ground-based Tropospheric Hydrogen Oxides Sensor (GTHOS).
Abstract: . The understanding of oxidation in forest atmospheres is being challenged by measurements of unexpectedly large amounts of hydroxyl (OH). A significant number of these OH measurements were made by laser-induced fluorescence in low-pressure detection chambers (called Fluorescence Assay with Gas Expansion (FAGE)) using the Penn State Ground-based Tropospheric Hydrogen Oxides Sensor (GTHOS). We deployed a new chemical removal method to measure OH in parallel with the traditional FAGE method in a California forest. The new method gives on average only 40–60% of the OH from the traditional method and this discrepancy is temperature dependent. Evidence indicates that the new method measures atmospheric OH while the traditional method is affected by internally generated OH, possibly from oxidation of biogenic volatile organic compounds. The improved agreement between OH measured by this new technique and modeled OH suggests that oxidation chemistry in at least one forest atmosphere is better understood than previously thought.

Journal ArticleDOI
20 Jan 2012-PLOS ONE
TL;DR: It is found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems, but chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields.
Abstract: The shift in marine resource management from a compartmentalized approach of dealing with resources on a species basis to an approach based on management of spatially defined ecosystems requires an accurate accounting of energy flow. The flow of energy from primary production through the food web will ultimately limit upper trophic-level fishery yields. In this work, we examine the relationship between yield and several metrics including net primary production, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production. We also evaluate the relationship between yield and two additional rate measures that describe the export of energy from the pelagic food web, particle export flux and mesozooplankton productivity. We found primary production is a poor predictor of global fishery yields for a sample of 52 large marine ecosystems. However, chlorophyll concentration, particle-export ratio, and the ratio of secondary to primary production were positively associated with yields. The latter two measures provide greater mechanistic insight into factors controlling fishery production than chlorophyll concentration alone. Particle export flux and mesozooplankton productivity were also significantly related to yield on a global basis. Collectively, our analyses suggest that factors related to the export of energy from pelagic food webs are critical to defining patterns of fishery yields. Such trophic patterns are associated with temperature and latitude and hence greater yields are associated with colder, high latitude ecosystems.

Journal ArticleDOI
TL;DR: In this paper, the authors performed an observationally based evaluation of the cloud ice water content (CIWC) and path (CIWP) of present-day GCMs, notably 20th century CMIP5 simulations, and compared these results to CMIP3 and two recent reanalyses.
Abstract: [1] We perform an observationally based evaluation of the cloud ice water content (CIWC) and path (CIWP) of present-day GCMs, notably 20th century CMIP5 simulations, and compare these results to CMIP3 and two recent reanalyses. We use three different CloudSat + CALIPSO ice water products and two methods to remove the contribution from the convective core ice mass and/or precipitating cloud hydrometeors with variable sizes and falling speeds so that a robust observational estimate can be obtained for model evaluations. The results show that for annual mean CIWP, there are factors of 2–10 in the differences between observations and models for a majority of the GCMs and for a number of regions. However, there are a number of CMIP5 models, including CNRM-CM5, MRI, CCSM4 and CanESM2, as well as the UCLA CGCM, that perform well compared to our past evaluations. Systematic biases in CIWC vertical structure occur below the mid-troposphere where the models overestimate CIWC, with this bias arising mostly from the extratropics. The tropics are marked by model differences in the level of maximum CIWC (∼250–550 hPa). Based on a number of metrics, the ensemble behavior of CMIP5 has improved considerably relative to CMIP3, although neither the CMIP5 ensemble mean nor any individual model performs particularly well, and there are still a number of models that exhibit very large biases despite the availability of relevant observations. The implications of these results on model representations of the Earth radiation balance are discussed, along with caveats and uncertainties associated with the observational estimates, model and observation representations of the precipitating and cloudy ice components, relevant physical processes and parameterizations.

Journal ArticleDOI
TL;DR: In this paper, the authors examined the characteristics of summertime heat waves in North America using reanalysis data and simulations by two general circulation models with horizontal resolution of 50 and 200 km.
Abstract: The characteristics of summertime heat waves in North America are examined using reanalysis data and simulations by two general circulation models with horizontal resolution of 50 and 200 km. Several “key regions” with spatially coherent and high amplitude fluctuations in daily surface air temperature are identified. The typical synoptic features accompanying warm episodes in these regions are described. The averaged intensity, duration, and frequency of occurrence of the heat waves in various key regions, as simulated in the two models for twentieth-century climate, are in general agreement with the results based on reanalysis data.The impact of climate change on the heat wave characteristics in various key regions is assessed by contrasting model runs based on a scenario for the twenty-first century with those for the twentieth century. Both models indicate considerable increases in the duration and frequency of heat wave episodes, and in number of heat wave days per year, during the twenty-firs...

Journal ArticleDOI
TL;DR: In this paper, the current understanding of past, present, and future changes in the Atlantic meridional overturning circulation and the effects of such changes on climate are reviewed, as well as the outstanding challenges and possible future directions for AMOC research are outlined.
Abstract: Observations and numerical modeling experiments provide evidence for links between variability in the Atlantic meridional overturning circulation (AMOC) and global climate patterns. Reduction in the strength of the overturning circulation is thought to have played a key role in rapid climate change in the past and may have the potential to significantly influence climate change in the future, as noted in the last two Intergovernmental Panel on Climate Change (IPCC) assessment reports (Houghton et al.; Solomon et al.). Both IPCC reports also highlighted the significant uncertainties that exist regarding the future behavior of the AMOC under global warming. Model results suggest that changes in the AMOC can impact surface air temperature, precipitation patterns, and sea level, particularly in areas bordering the North Atlantic, thus affecting human populations. Here, the current understanding of past, present, and future changes in the AMOC and the effects of such changes on climate are reviewed. The focus is on observations of the AMOC, how the AMOC influences climate, and in what way the AMOC is likely to change over the next few decades and the twenty-first century. The potential for decadal prediction of the AMOC is also discussed. Finally, the outstanding challenges and possible future directions for AMOC research are outlined.

Journal ArticleDOI
TL;DR: In this paper, an empirical correction to the gridded World Ocean Atlas (WOA based on in situ observations is proposed to estimate the extent of O2 depletion in OMZs, and the resulting suboxic volumes are a factor 3 larger than in the uncorrected WOA.
Abstract: [1] Oxygen minimum zones (OMZs) are major sites of fixed nitrogen removal from the open ocean However, commonly used gridded data sets such as the World Ocean Atlas (WOA) tend to overestimate the concentration of O2 compared to measurements in grids where O2 falls in the suboxic range (O2 < 2–10 mmol m−3), thereby underestimating the extent of O2 depletion in OMZs We evaluate the distribution of the OMZs by (1) mapping high-quality oxygen measurements from the WOCE program, and (2) by applying an empirical correction to the gridded WOA based on in situ observations The resulting suboxic volumes are a factor 3 larger than in the uncorrected gridded WOA We combine the new oxygen data sets with estimates of global export and simple models of remineralization to estimate global denitrification and N2O production We obtain a removal of fixed nitrogen of 70 ± 50 Tg year−1 in the open ocean and 198 ± 64 Tg year−1 in the sediments, and a global N2O production of 62 ± 32 Tg year−1 Our results (1) reconcile water column denitrification rates based on global oxygen distributions with previous estimates based on nitrogen isotopes, (2) revise existing estimates of sediment denitrification down by 1/3d through the use of spatially explicit fluxes, and (3) provide independent evidence supporting the idea of a historically balanced oceanic nitrogen cycle These estimates are most sensitive to uncertainties in the global export production, the oxygen threshold for suboxic processes, and the efficiency of particle respiration under suboxic conditions Ocean deoxygenation, an expected response to anthropogenic climate change, could increase denitrification by 14 Tg year−1 of nitrogen per 1 mmol m−3 of oxygen reduction if uniformly distributed, while leaving N2O production relatively unchanged

Journal ArticleDOI
TL;DR: In this article, the authors used the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product for a multimodel evaluation of the vertical distribution of aerosols.
Abstract: The CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) layer product is used for a multimodel evaluation of the vertical distribution of aerosols. Annual and seasonal aerosol extinction profiles are analyzed over 13 sub-continental regions representative of industrial, dust, and biomass burning pollution, from CALIOP 2007-2009 observations and from AeroCom (Aerosol Comparisons between Observations and Models) 2000 simulations. An extinction mean height diagnostic (Z-alpha) is defined to quantitatively assess the models' performance. It is calculated over the 0-6 km and 0-10 km altitude ranges by weighting the altitude of each 100 m altitude layer by its aerosol extinction coefficient. The mean extinction profiles derived from CALIOP layer products provide consistent regional and seasonal specificities and a low inter-annual variability. While the outputs from most models are significantly correlated with the observed Z-alpha climatologies, some do better than others, and 2 of the 12 models perform particularly well in all seasons. Over industrial and maritime regions, most models show higher Z-alpha than observed by CALIOP, whereas over the African and Chinese dust source regions, Z-alpha is underestimated during Northern Hemisphere Spring and Summer. The positive model bias in Z-alpha is mainly due to an overestimate of the extinction above 6 km. Potential CALIOP and model limitations, and methodological factors that might contribute to the differences are discussed.

Journal ArticleDOI
TL;DR: In this article, a simple parameterization is described to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport mod- els.
Abstract: This study describes a simple parameterization to estimate regionally averaged changes in surface ozone due to past or future changes in anthropogenic precursor emissions based on results from 14 global chemistry transport mod- els. The method successfully reproduces the results of full simulations with these models. For a given emission sce- nario it provides the ensemble mean surface ozone change, a regional source attribution for each change, and an esti- mate of the associated uncertainty as represented by the vari- ation between models. Using the Representative Concentra- tion Pathway (RCP) emission scenarios as an example, we show how regional surface ozone is likely to respond to emis- sion changes by 2050 and how changes in precursor emis- sions and atmospheric methane contribute to this. Surface ozone changes are substantially smaller than expected with the SRES A1B, A2 and B2 scenarios, with annual global mean reductions of as much as 2 ppb by 2050 vs. increases of 4-6 ppb under SRES, and this reflects the assumptions of more stringent precursor emission controls under the RCP scenarios. We find an average difference of around 5 ppb be- tween the outlying RCP 2.6 and RCP 8.5 scenarios, about 75 % of which can be attributed to differences in methane abundance. The study reveals the increasing importance of limiting atmospheric methane growth as emissions of other precursors are controlled, but highlights differences in mod- elled ozone responses to methane changes of as much as a factor of two, indicating that this remains a major uncertainty in current models.

Journal ArticleDOI
TL;DR: In this paper, a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM was conducted to investigate the reasons for poor performance in the tropical Atlantic in terms of seasonal cycle and interannual variability.
Abstract: Most coupled general circulation models (GCMs) perform poorly in the tropical Atlantic in terms of climatological seasonal cycle and interannual variability. The reasons for this poor performance are investigated in a suite of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) coupled GCM. The experiments show that a significant portion of the equatorial SST biases in the model is due to weaker than observed equatorial easterlies during boreal spring. Due to these weak easterlies, the tilt of the equatorial thermocline is reduced, with shoaling in the west and deepening in the east. The erroneously deep thermocline in the east prevents cold tongue formation in the following season despite vigorous upwelling, thus inhibiting the Bjerknes feedback. It is further shown that the surface wind errors are due, in part, to deficient precipitation over equatorial South America and excessive precipitation over equatorial Africa, which already exist in the uncoupled atmospheric GCM. Additional tests indicate that the precipitation biases are highly sensitive to land surface conditions such as albedo and soil moisture. This suggests that improving the representation of land surface processes in GCMs offers a way of improving their performance in the tropical Atlantic. The weaker than observed equatorial easterlies also contribute remotely, via equatorial and coastal Kelvin waves, to the severe warm SST biases along the southwest African coast. However, the strength of the subtropical anticyclone and along-shore winds also play an important role.

Journal ArticleDOI
TL;DR: In this article, the authors developed an analysis framework to identify how physical processes, as represented in ocean climate models, impact the evolution of global mean sea level, and found that surface heating is the dominant term affecting sea level arising from buoyancy fluxes, contributing to a net positive tendency to global Mean Sea level, largely due to low latitude heating and because the thermal expansion coefficient is much larger in the tropics than high latitudes.

Journal ArticleDOI
TL;DR: In this article, a tropical cyclone-permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century.
Abstract: A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%...

Journal ArticleDOI
TL;DR: In this paper, the global monsoon precipitation had an increasing trend over the past three decades and whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns.
Abstract: [1] Monsoons, the most energetic tropical climate system, exert a great social and economic impact upon billions of people around the world. The global monsoon precipitation had an increasing trend over the past three decades. Whether or not this increasing trend will continue in the 21st century is investigated, based on simulations of three high-resolution atmospheric general circulation models that were forced by different future sea surface temperature (SST) warming patterns. The results show that the global monsoon area, precipitation and intensity all increase consistently among the model projections. This indicates that the strengthened global monsoon is a robust signal across the models and SST patterns explored here. The increase of the global monsoon precipitation is attributed to the increases of moisture convergence and surface evaporation. The former is caused by the increase of atmospheric water vapor and the latter is due to the increase of SST. The effect of the moisture and evaporation increase is offset to a certain extent by the weakening of the monsoon circulation.

Journal ArticleDOI
TL;DR: In this paper, the dynamical mechanism for the late-winter teleconnection between El Nino and the North Atlantic Oscillation (NAO) was examined using the output from a 2000-yr integration of a coupled general circulation model (GCM).
Abstract: The dynamical mechanism for the late-winter teleconnection between El Nino–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) is examined using the output from a 2000-yr integration of a coupled general circulation model (GCM). The coupled model captures many salient features of the observed behavior of both ENSO and NAO, as well as their impact on the surface climate in late winter. Both the observational and model data indicate more occurrences of negative phase of NAO in late winter during El Nino events, and positive NAO in La Nina episodes.The potential role of high-frequency transient eddies in the above teleconnection is diagnosed. During El Nino winters, the intensified transient disturbances along the equatorward-shifted North Pacific storm track extend their influences farther downstream. The eddy-induced negative height tendencies are found to be more coherent and stronger over North Atlantic than that over North Pacific. These negative height tendencies over the North...

Journal ArticleDOI
TL;DR: In this article, the authors analyzed the changes in mean climate in response to doubling of atmospheric CO2 (2xCO2) influence ENSO, and quantified the processes involved the development, transition, and decay of simulated ENSI events through a multimodel heat budget analysis.
Abstract: Climate model experiments are analyzed to elucidate if and how the changes in mean climate in response to doubling of atmospheric CO2 (2xCO2) influence ENSO. The processes involved the development, transition, and decay of simulated ENSO events are quantified through a multimodel heat budget analysis. The simulated changes in ENSO amplitude in response to 2xCO2 are directly related to changes in the anomalous ocean heat flux convergence during the development, transition, and decay of ENSO events. The weakening of the Walker circulation and the increased thermal stratification, both robust features of the mean climate response to 2xCO2, play opposing roles in ENSO–mean climate interactions. Weaker upwelling in response to a weaker Walker circulation drives a reduction in thermocline-driven ocean heat flux convergence (i.e., thermocline feedback) and, thus, reduces the ENSO amplitude. Conversely, a stronger zonal subsurface temperature gradient, associated with the increased thermal stratification,...

Journal ArticleDOI
TL;DR: In this paper, the role of the baroclinic wave fields in energy dissipation in the Luzon Strait between Taiwan and the Philippines was investigated using numerical simulations with the Massachusetts Institute of Technology general circulation model (MITgcm).
Abstract: Luzon Strait between Taiwan and the Philippines features two parallel north–south-oriented ridges. The barotropic tides that propagate over these ridges cause strong internal waves and dissipation. The energy dissipation mechanisms and the role of the baroclinic wave fields in this dissipation are investigated using numerical simulations with the Massachusetts Institute of Technology general circulation model (MITgcm). The model is integrated over two-dimensional configurations along a zonal transect at 20.6°N for a maximum duration of a spring–neap cycle. Nearly all dissipation occurs at the steep ridge crests due to high-mode turbulent lee waves with horizontal scales of several kilometers and vertical scales of hundreds of meters. The spatial structure and timing of the predicted velocities and dissipation agree with observations and confirm the existence of these lee waves. The lee wave strength is greatly affected by the internal waves generated at the other ridge. When semidiurnal barotropic...

Journal ArticleDOI
TL;DR: In this paper, the authors describe a 29-yr (1981-2009) global ocean surface gravity wave simulation generated by a coupled atmosphere-wave model using NOAA/GFDL's HighResolution Atmosphere Model (HiRAM) and the WAVEWATCH III surface wave model developed and used operationally at NOAA/NCEP.
Abstract: This study describes a 29-yr (1981–2009) global ocean surface gravity wave simulation generated by a coupled atmosphere–wave model using NOAA/GFDL’s High-Resolution Atmosphere Model (HiRAM) and the WAVEWATCH III surface wave model developed and used operationally at NOAA/NCEP. Extensive evaluation of monthly mean significant wave height (SWH) against in situ buoys, satellite altimeter measurements, and the 40-yr ECMWF Re-Analysis (ERA-40) show very good agreements in terms of magnitude, spatial distribution, and scatter. The comparisons with satellite altimeter measurements indicate that the SWH low bias in ERA-40 reanalysis has been improved in these model simulations. The model fields show a strong response to the North Atlantic Oscillation (NAO) in the North Atlantic and the Southern Oscillation index (SOI) in the Pacific Ocean that are well connected with the atmospheric responses. For the NAO in winter, the strongest subpolar wave responses are found near the northern Europe coast and the coa...

Journal ArticleDOI
TL;DR: In this paper, the authors compare two budburst hypotheses through reversible jump Markov chain Monte Carlo and investigate how uncertainties in budburst date mapped onto uncertainties in ecosystem carbon using the Geophysical Fluid Dynamics Laboratory's LM3 land model.
Abstract: [1] In temperate regions, the budburst date of deciduous trees is mainly regulated by temperature variation, but the exact nature of the temperature dependence has been a matter of debate. One hypothesis is that budburst date depends purely on the accumulation of warm temperature; a competing hypothesis states that exposure to cold temperatures is also important for budburst. In this study, variability in budburst is evaluated using 15 years of budburst data for 17 tree species at Harvard Forest. We compare two budburst hypotheses through reversible jump Markov chain Monte Carlo. We then investigate how uncertainties in budburst date mapped onto uncertainties in ecosystem carbon using the Geophysical Fluid Dynamics Laboratory's LM3 land model. For 15 of 17 species, we find that more complicated budburst models that account for a chilling period are favored over simpler models that do not include such dependence. LM3 simulations show that the choice of budburst model induces differences in the timing of carbon uptake commencement of ∼11 days, in the magnitude of April–May carbon uptake of ∼1.03 g C m−2 day−1, and in total ecosystem carbon stocks of ∼2 kg C m−2. While the choice of whether to include a chilling period in the budburst model strongly contributes to this variability, another important factor is how the species-dependent field data gets mapped onto LM3's single deciduous plant functional type (PFT). We conclude budburst timing has a strong impact on simulated CO2 fluxes, and uncertainty in the fluxes can be substantially reduced by improving the model's representation of PFT diversity.

Journal ArticleDOI
TL;DR: In this paper, an approach to climate change feedback analysis is described in which tropospheric relative humidity replacesspecifichumidityasthestate variable that, along with thetemperaturestructure,surfacealbedos,and clouds, controls the magnitude of the response of global mean surface temperature to a radiative forcing.
Abstract: An approach to climate change feedback analysis is described in which tropospheric relative humidity replacesspecifichumidityasthestatevariablethat,alongwiththetemperaturestructure,surfacealbedos,and clouds, controls the magnitude of the response of global mean surface temperature to a radiative forcing. Despite being simply a regrouping of terms in the feedback analysis, this alternative perspective has the benefit of removing most of the pervasive cancellation between water and lapse-rate feedbacks seen in models. As a consequence, the individual feedbacks have less scatter than in the traditional formulation. The role of cloud feedbacks in controlling climate sensitivity is also reflected more clearly in the new formulation.

Journal ArticleDOI
TL;DR: In this paper, the initial-value predictability of six atmosphere-ocean general circulation models in the North Pacific and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant external conditions.
Abstract: Initial-value predictability measures the degree to which the initial state can influence predictions. In this paper, the initial-value predictability of six atmosphere–ocean general circulation models in the North Pacific and North Atlantic is quantified and contrasted by analyzing long control integrations with time invariant external conditions. Through the application of analog and multivariate linear regression methodologies, average predictability properties are estimated for forecasts initiated from every state on the control trajectories. For basinwide measures of predictability, the influence of the initial state tends to last for roughly a decade in both basins, but this limit varies widely among the models, especially in the North Atlantic. Within each basin, predictability varies regionally by as much as a factor of 10 for a given model, and the locations of highest predictability are different for each model. Model-to-model variations in predictability are also seen in the behavior of prominent intrinsic basin modes. Predictability is primarily determined by the mean of forecast distributions rather than the spread about the mean. Horizontal propagation plays a large role in the evolution of these signals and is therefore a key factor in differentiating the predictability of the various models.

Journal ArticleDOI
TL;DR: A global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone is used to evaluate the role of air-sea exchange in the global budget and it is found that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations andAir-sea fluxes.
Abstract: [1] Acetone is one of the most abundant carbonyl compounds in the atmosphere and it plays an important role in atmospheric chemistry. The role of the ocean in the global atmospheric acetone budget is highly uncertain, with past studies reaching opposite conclusions as to whether the ocean is a source or sink. Here we use a global 3-D chemical transport model (GEOS-Chem) simulation of atmospheric acetone to evaluate the role of air-sea exchange in the global budget. Inclusion of updated (slower) photolysis loss in the model means that a large net ocean source is not needed to explain observed acetone in marine air. We find that a simulation with a fixed seawater acetone concentration of 15 nM based on observations can reproduce the observed global patterns of atmospheric concentrations and air-sea fluxes. The Northern Hemisphere oceans are a net sink for acetone while the tropical oceans are a net source. On a global scale the ocean is in near-equilibrium with the atmosphere. Prescribing an ocean concentration of acetone as a boundary condition in the model assumes that ocean concentrations are controlled by internal production and loss, rather than by air-sea exchange. An implication is that the ocean plays a major role in controlling atmospheric acetone. This hypothesis needs to be tested by better quantification of oceanic acetone sources and sinks.