scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
17 May 2019
TL;DR: GCRMs are designed to resolve the multiscale nature of moist convection in the global dynamics context, without using cumulus parameterization, and are the promise of a new generation of global weather and climate simulations.
Abstract: Global cloud-resolving models (GCRMs) are a new type of atmospheric model which resolve nonhydrostatic accelerations globally with kilometer-scale resolution. This review explains what distinguishes GCRMs from other types of models, the problems they solve, and the questions their more commonplace use is raising. GCRMs require high-resolution discretization over the sphere but can differ in many other respects. They are beginning to be used as a main stream research tool. The first GCRM intercomparison studies are being coordinated, raising new questions as to how best to exploit their advantages. GCRMs are designed to resolve the multiscale nature of moist convection in the global dynamics context, without using cumulus parameterization. Clouds are simulated with cloud microphysical schemes in ways more comparable to observations. Because they do not suffer from ambiguity arising from cumulus parameterization, as computational resources increase, GCRMs are the promise of a new generation of global weather and climate simulations.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used freely decaying geostrophic turbulence to understand and explain the vertical and horizontal flow of energy through a stratified, horizontally homogeneous geosynthetic fluid and found that the presence of pycnocline has significant, qualitative effects on the efficiency and spectral pathways of energy flow.
Abstract: Quasigeostrophic turbulence theory and numerical simulation are used to study the mechanisms determining the scale, structure, and equilibration of mesoscale ocean eddies. The present work concentrates on using freely decaying geostrophic turbulence to understand and explain the vertical and horizontal flow of energy through a stratified, horizontally homogeneous geostrophic fluid. It is found that the stratification profile, in particular the presence of a pycnocline, has significant, qualitative effects on the efficiency and spectral pathways of energy flow. Specifically, with uniform stratification, energy in high baroclinic modes transfers directly, quickly (within a few eddy turnaround times), and almost completely to the barotropic mode. By contrast, in the presence of oceanlike stratification, kinetic energy in high baroclinic modes transfers intermediately to the first baroclinic mode, whence it transfers inefficiently (and incompletely) to the barotropic mode. The efficiency of transfer to the barotropic mode is reduced as the pycnocline is made increasingly thin. The b effect, on the other hand, improves the efficiency of barotropization, but for oceanically realistic parameters this effect is relatively unimportant compared to the effects of nonuniform stratification. Finally, the nature of turbulent cascade dynamics is such as to lead to a concentration of first baroclinic mode kinetic energy near the first radius of deformation, which, in the case of a nonuniform and oceanically realistic stratification, has a significant projection at the surface. This may in part explain recent observations of surface eddy scales by TOPEX/Poseidon satellite altimetry, which indicate a correlation of surface-height variance with the scale of the first deformation radius.

167 citations

Journal ArticleDOI
23 Aug 1991-Science
TL;DR: An intercomparison of 17 general circulation models suggests that additional amplification or moderation may be caused both by cloud interactions and longwave radiation.
Abstract: Snow feedback is expected to amplify global warming caused by increasing concentrations of atmospheric greenhouse gases. The conventional explanation is that a warmer Earth will have less snow cover, resulting in a darker planet that absorbs more solar radiation. An intercomparison of 17 general circulation models, for which perturbations of sea surface temperature were used as a surrogate climate change, suggests that this explanation is overly simplistic. The results instead indicate that additional amplification or moderation may be caused both by cloud interactions and longwave radiation. One measure of this net effect of snow feedback was found to differ markedly among the 17 climate models, ranging from weak negative feedback in some models to strong positive feedback in others.

167 citations

Journal ArticleDOI
TL;DR: This analysis of long-term tide gauge records shows that this extreme SLR event is a combined effect of two factors: an observed 30% downturn of the Atlantic meridional overturning circulation during 2009-10, and a significant negative North Atlantic Oscillation index.
Abstract: Extreme sea level rises are a threat to coastal communities, but their cause, in terms of seasonal or interannual time scales, has received little attention. Here, the authors combine observational and model data to show that one such rise in 2009–10 was caused by a 30% downturn in the Atlantic overturning circulation.

166 citations

Journal ArticleDOI
TL;DR: Premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5, is estimated to be positive in all regions except Africa, and is greatest in India and East Asia.
Abstract: The effect of ozone and fine particulate matter on human health is dependent on emissions and climate change. Here the effects of climate change on air pollution mortality are isolated, with increases predicted in all regions except Africa. Ground-level ozone and fine particulate matter (PM 2.5) are associated with premature human mortality1,2,3,4; their future concentrations depend on changes in emissions, which dominate the near-term5, and on climate change6,7. Previous global studies of the air-quality-related health effects of future climate change8,9 used single atmospheric models. However, in related studies, mortality results differ among models10,11,12. Here we use an ensemble of global chemistry–climate models13 to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP8.5 (ref. 14), is probably positive. We estimate 3,340 (−30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (−195,000 to 237,000) in 2100 (14% of the increase in global ozone-related mortality). For PM 2.5, we estimate 55,600 (−34,300 to 164,000) deaths in 2030 and 215,000 (−76,100 to 595,000) in 2100 (countering by 16% the global decrease in PM 2.5-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

166 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887