scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a series of idealised numerical simulations of dense water flowing down a broad uniform slope are presented, employing both a z-coordinate model (the MIT general circulation model) and an isopycnal coordinate model.

178 citations

Journal ArticleDOI
TL;DR: A global ocean-ice-ecosystem model was assessed against a suite of observation-based planktonic food web flux estimates, many of which were not considered in previous modeling studies, and it was suggested that shortened food webs, elevated growth efficiencies, and tight consumer-resource coupling enable oceanic upwelling systems to support 45% of pelagic mesozooplankton production despite accounting for only 22% of ocean area and 34% of NPP.

178 citations

Journal ArticleDOI
TL;DR: Ginoux et al. as discussed by the authors simulated the evolution of ozone and aerosol concentrations from 1860 to 2100 on the basis of estimated historical emissions and four different future emission scenarios (Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2, A1B, B1, and A1FI).
Abstract: [1] Tropospheric ozone and aerosols are radiatively important trace species, whose concentrations have increased dramatically since preindustrial times and are projected to continue to change in the future. The evolution of ozone and aerosol concentrations from 1860 to 2100 is simulated on the basis of estimated historical emissions and four different future emission scenarios (Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2, A1B, B1, and A1FI). The simulations suggest that the tropospheric burden of ozone has increased by 50% and sulfate and carbonaceous aerosol burdens have increased by factors of 3 and 6, respectively, since preindustrial times. Projected ozone changes over the next century range from −6% to +43%, depending on the emissions scenario. Sulfate concentrations are projected to increase for the next several decades but then to decrease by 2100 to 4–45% below their 2000 values. Simulated ozone concentrations agree well with present-day observations and recent trends. Preindustrial surface concentrations of ozone are shown to be sensitive to the assumed anthropogenic and biomass burning emissions, but in all cases they overestimate the few available measurements from that era. Simulated tropospheric burdens of aerosols are sensitive by up to a factor of 2 to assumptions about the rate of aerosol wet deposition in the model. The concentrations of ozone and aerosols produced by this study are provided as climate-forcing agents in the Geophysical Fluid Dynamics Laboratory coupled climate model to estimate their effects on climate. The aerosol distributions from this study and the resulting optical depths are evaluated in a companion paper by P. Ginoux et al. (2006).

177 citations

Journal ArticleDOI
TL;DR: In this article, the influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response was investigated using a coupled ocean-atmosphere model, where five transient integrations were performed each using a different constant exponential rate of CO2 increase ranging from 4% to 0.25% yr−1.
Abstract: The influence of differing rates of increase of the atmospheric CO2 concentration on the climatic response is investigated using a coupled ocean–atmosphere model. Five transient integrations are performed each using a different constant exponential rate of CO2 increase ranging from 4% yr−1 to 0.25% yr−1. By the time of CO2 doubling, the surface air temperature response in all the transient integrations is locally more than 50% and globally more than 35% of the equilibrium response. The land–sea contrast in the warming, which is evident in the equilibrium results, is larger in all the transient experiments. The land–sea difference in the response increases with the rate of increase in atmospheric CO2 concentration. The thermohaline circulation (THC) weakens in response to increasing atmospheric CO2 concentration in all the transient integrations, confirming earlier work. The results also indicate that the slower the rate of increase, the larger the weakening of the THC by the time of doubling. Two...

176 citations

Journal ArticleDOI
TL;DR: In this paper, the authors simulate changes in primary productivity, species range shifts, zooplankton community size structure, ocean acidification, and ocean deoxygenation both individually and together using five Ecopath with Ecosim models of the northeast Pacific Ocean.
Abstract: Although there has been considerable research on the impacts of individual changes in water temperature, carbonate chemistry, and other variables on species, cumulative impacts of these effects have rarely been studied. Here, we simulate changes in (i) primary productivity, (ii) species range shifts, (iii) zooplankton community size structure, (iv) ocean acidification, and (v) ocean deoxygenation both individually and together using five Ecopath with Ecosim models of the northeast Pacific Ocean. We used a standardized method to represent climate effects that relied on time-series forcing functions: annual multipliers of species productivity. We focused on changes in fisheries landings, biomass, and ecosystem characteristics (diversity and trophic indices). Fisheries landings generally declined in response to cumulative effects and often to a greater degree than would have been predicted based on individual climate effects, indicating possible synergies. Total biomass of fished and unfished functional groups displayed a decline, though unfished groups were affected less negatively. Some functional groups (e.g. pelagic and demersal invertebrates) were predicted to respond favourably under cumulative effects in some regions. The challenge of predicting climate change impacts must be met if we are to adapt and manage rapidly changing marine ecosystems in the 21st century.

175 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887