scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a successful general circulation model simulation of a rapid warming phenomenon observed in the Martian winter polar atmosphere during global dust storm conditions is presented, which is largely a response to the development of a pole-to-pole solstitial Hadley circulation resulting from the greatly increased dust loading.
Abstract: This paper reports on a successful general circulation model simulation of a rapid warming phenomenon observed in the Martian winter polar atmosphere during global dust storm conditions. The model includes a self-consistent simulation of the dust distribution which is forced with a prescribed surface source. The warming is shown to be largely a response to the development of a pole-to-pole solstitial Hadley circulation resulting from the greatly increased dust loading. A crucial aspect of the simulation is a sufficiently deep computational domain that allows for the full development of this circulation. These simulations indicate that the thermal tides play a contributing role by providing zonal momentum flux divergence at the winter pole and by the advection of aerosol.

143 citations

Journal ArticleDOI
TL;DR: In this paper, a statistical dynamical hurricane forecasting system, based on a statistical hurricane model, with explicit uncertainty estimates, and built from a suite of high-resolutionglobalatmosphericdynamicalmodelintegrations spanning a broad range of climate states is described.
Abstract: Skillfullypredicting North Atlantichurricane activitymonths in advance is of potential societal significance and a useful test of our understanding of the factors controlling hurricane activity. In this paper, a statistical‐ dynamical hurricane forecasting system, based on a statistical hurricane model, with explicit uncertainty estimates,andbuiltfromasuiteofhigh-resolutionglobalatmosphericdynamicalmodelintegrationsspanning a broad range of climate states is described. The statistical model uses two climate predictors: the sea surface temperature (SST) in the tropical North Atlantic and SST averaged over the global tropics. The choice of predictorsis motivatedby physicalconsiderations, aswell astheresultsofhigh-resolutionhurricanemodeling and statistical modeling of the observed record. The statistical hurricane model is applied to a suite of initialized dynamical global climate model forecasts of SST to predict North Atlantic hurricane frequency, which peaks during the August‐October season, from different starting dates. Retrospective forecasts of the 1982‐2009 period indicate that skillful predictions can be made from as early as November of the previous year; that is, skillful forecasts for the coming North Atlantic hurricane season could be made as the current one is closing. Based on forecasts initialized between November 2009 and March 2010, the model system predictsthattheupcoming2010NorthAtlantichurricaneseasonwilllikelybemoreactivethanthe1982‐2009 climatology, with the forecasts initialized in March 2010 predicting an expected hurricane count of eight and a 50% probability of counts between six (the 1966‐2009 median) and nine.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors assessed future changes in global tropical cyclone (TC) activity using 5,000-year scale ensemble simulations for both current and 4-K surface warming climates with a 60 km global atmospheric model.
Abstract: Projected future changes in global tropical cyclone (TC) activity are assessed using 5,000 year scale ensemble simulations for both current and 4 K surface warming climates with a 60 km global atmospheric model. The global number of TCs decreases by 33% in the future projection. Although geographical TC occurrences decrease generally, they increase in the central and eastern parts of the extra tropical North Pacific. Meanwhile, very intense (category 4 and 5) TC occurrences increase over a broader area including the south of Japan and south of Madagascar. The global number of category 4 and 5 TCs significantly decreases, contrary to the increase seen in several previous studies. Lifetime maximum surface wind speeds and precipitation rate are amplified globally. Regional TC activity changes have large uncertainty corresponding to sea surface temperature warming patterns. TC-resolving large-ensemble simulations provide useful information, especially for policy making related to future climate change.

142 citations

Journal ArticleDOI
TL;DR: In this paper, a modified version of the Geophysical Fluid Dynamics Laboratory atmosphere general circulation model (AM2.1) coupled with a mixed layer ocean model is used to study the equilibrium temperature and hydrological responses to the total aerosol effects.
Abstract: The equilibrium temperature and hydrological responses to the total aerosol effects (i.e., direct, semidirect, and indirect effects) are studied using a modified version of the Geophysical Fluid Dynamics Laboratory atmosphere general circulation model (AM2.1) coupled to a mixed layer ocean model. The treatment of aerosol‐liquid cloud interactions and associated indirect effects is based upon a prognostic scheme of cloud droplet number concentration, with an explicit representation of cloud condensation nuclei activation involving sulfate, organic carbon, and sea salt aerosols. Increasing aerosols from preindustrial (1860) to presentday (1990) levels leads to a decrease of 1.9 K in the global annual mean surface temperature. The cooling is relatively strong over the Northern Hemisphere midlatitude land owing to the high aerosol burden there, while being amplified at high latitudes. When being subject to aerosols and radiatively active gases (i.e., wellmixed greenhouse gases and ozone) simultaneously, the model climate behaves nonlinearly; the simulated increase in surface temperature (0.55 K) is considerably less than the arithmetic sum of separate aerosol and gas effects (0.86 K). The thermal responses are accompanied by the nonlinear changes in cloud fields, which are amplified owing to the surface albedo feedback at high latitudes. The two effects completely offset each other in the Northern Hemisphere, while gas effect is dominant in the Southern Hemisphere. Both factors are crucial in shaping the regional responses. Interhemispheric asymmetry in aerosol-induced cooling yields a southward shift of the intertropical convergence zone, thus giving rise to a significant reduction in precipitation north of the equator, and an increase to the south. The simulations show that the change of precipitation in response to the simultaneous increases in aerosols and gases not only largely follows the same pattern as that for aerosols alone, but that it is also substantially strengthened in terms of magnitude south of 108N. This is quite different from the damping expected from adding up individual responses, and further indicates the nonlinearity in the model’s hydrological response.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Comparisons Project (RFMIP).
Abstract: The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.

142 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887