scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, seasonal and geographical distributions of tropospheric ozone production and mixing ratios over East Asia with a global three-dimensional chemical transport model called Model of Ozone and Related Tracers, version 1 (MOZART 1).
Abstract: We examine seasonal and geographical distributions of tropospheric ozone production and mixing ratios over East Asia with a global three-dimensional chemical transport model called Model of Ozone and Related Tracers, version 1 (MOZART 1). Net ozone production within the East Asian boundary layer exhibits three distinct seasonal cycles depending on region (north of 20°N, 5–20°N and south of 5°N). North of 20°N, net ozone production over East Asia from spring through autumn is found to have a maximum extending from 25°N–40°N and from central eastern China to Japan, resulting from the strong emission and transport of anthropogenic O3 precursors. In winter, maximum O3 production in this region occurs between 20°N and 30°N. This is a region of long-range transport. Over the Indochina peninsula, between 5°N and 20°N, net O3 production is controlled by the seasonal cycle between wet and dry seasons and has a maximum at the end of the dry season due to emissions from biomass burning. South of 5°N, in the true tropics, O3 mixing ratios are relatively constant throughout the year and do not exhibit a seasonal cycle. A spring-summer maximum of net O3 production is found throughout the troposphere in East Asia. We estimate an annual net O3 production in East Asia of 117 Tg/yr. Both model results and analysis of measurements of O3/CO correlations over East Asia and Japan show strong variability as a function of both photochemical activity and seasonal meteorology, and indicate ozone export off the coast of East Asia in spring. An upper estimate of O3 export from East Asia to the Pacific Ocean in the mid-1980s of 3.3 Gmol/d (58 Tg/yr) is obtained.

105 citations

Journal ArticleDOI
TL;DR: In this paper, a number of systematic analyses are conducted to investigate the seasonal and interannual variability of the concentrations at specific locations and investigate the sensitivity of the distributions to various physical parameters.
Abstract: [1] Atmospheric distributions of carbonaceous aerosols are simulated using the Geophysical Fluid Dynamics Laboratory SKYHI general circulation model (GCM) (latitude-longitude resolution of ∼3° × 3.6°). A number of systematic analyses are conducted to investigate the seasonal and interannual variability of the concentrations at specific locations and to investigate the sensitivity of the distributions to various physical parameters. Comparisons are made with several observational data sets. At four specific sites (Mace Head, Mauna Loa, Sable Island, and Bondville) the monthly mean measurements of surface concentrations of black carbon made over several years reveal that the model simulation registers successes as well as failures. Comparisons are also made with averages of measurements made over varying time periods, segregated by geography and rural/remote locations. Generally, the mean measured remote surface concentrations exceed those simulated. Notwithstanding the large variability in measurements and model simulations, the simulations of both black and organic carbon tend to be within about a factor of 2 at a majority of the sites. There are major challenges in conducting comparisons with measurements due to inadequate sampling at some sites, the generally short length of the observational record, and different methods used for estimating the black and organic carbon amounts. The interannual variability in the model and in the few such measurements available points to the need for doing multiyear modeling and to the necessity of comparing with long-term measurements. There are very few altitude profile measurements; notwithstanding the large uncertainties, the present comparisons suggest an overestimation by the model in the free troposphere. The global column burdens of black and organic carbon in the present standard model integration are lower than in previous studies and thus could be regarded as approximately bracketing a lower end of the simulated anthropogenic burden due to these classes of aerosols, based on the current understanding of the carbonaceous aerosol cycle. Of the physical factors examined, the intensity and frequency of precipitation events are critical in governing the column burdens. Biases in the frequency of precipitation are likely the single biggest cause of discrepancies between simulation and observations. This parameter is available from very few sites and thus lacks a comprehensive global data set, unlike, say, monthly mean precipitation. Several multiyear GCM integrations have been performed to evaluate the sensitivity of the global mean black carbon distribution to the principal aerosol parameters, with due regard to variability and statistical significance. The most sensitive parameters, in order of importance, turn out to be the wet deposition, transformation from hydrophobic to hydrophilic state, and the partitioning of the emitted aerosol between the hydrophobic and hydrophilic varieties. From the sensitivity tests, it is estimated that the variations of the global mean column burden and lifetime of black carbon are within about a factor of 2 about their respective standard values. The studies also show that the column burdens over remote regions appear to be most sensitive to changes in each parameter, reiterating the importance of measurements in those locations for a proper evaluation of model simulation of these aerosols.

105 citations

Journal ArticleDOI
TL;DR: In this article, the authors quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions.
Abstract: [1] The global distribution of tropospheric ozone (O3) depends on the emission of precursors, chemistry, and transport. For small perturbations to emissions, the global radiative forcing resulting from changes in O3 can be expressed as a sum of forcings from emission changes in different regions. Tropospheric O3 is considered in present climate policies only through the inclusion of indirect effect of CH4 on radiative forcing through its impact on O3 concentrations. The short-lived O3 precursors (NOx, CO, and NMHCs) are not directly included in the Kyoto Protocol or any similar climate mitigation agreement. In this study, we quantify the global radiative forcing resulting from a marginal reduction (10%) in anthropogenic emissions of NOx alone from nine geographic regions and a combined marginal reduction in NOx, CO, and NMHCs emissions from three regions. We simulate, using the global chemistry transport model MOZART-2, the change in the distribution of global O3 resulting from these emission reductions. In addition to the short-term reduction in O3, these emission reductions also increase CH4 concentrations (by decreasing OH); this increase in CH4 in turn counteracts part of the initial reduction in O3 concentrations. We calculate the global radiative forcing resulting from the regional emission reductions, accounting for changes in both O3 and CH4. Our results show that changes in O3 production and resulting distribution depend strongly on the geographical location of the reduction in precursor emissions. We find that the global O3 distribution and radiative forcing are most sensitive to changes in precursor emissions from tropical regions and least sensitive to changes from midlatitude and high-latitude regions. Changes in CH4 and O3 concentrations resulting from NOx emission reductions alone produce offsetting changes in radiative forcing, leaving a small positive residual forcing (warming) for all regions. In contrast, for combined reductions of anthropogenic emissions of NOx, CO, and NMHCs, changes in O3 and CH4 concentrations result in a net negative radiative forcing (cooling). Thus we conclude that simultaneous reductions of CO, NMHCs, and NOx lead to a net reduction in radiative forcing due to resulting changes in tropospheric O3 and CH4 while reductions in NOx emissions alone do not.

105 citations

Journal ArticleDOI
TL;DR: In this article, a technique for diagnosing the mechanisms that control the humidity in a general circulation model (GCM) or observationally derived meteorological analysis dataset is presented, which involves defining a large number of tracers, each of which represents air that has last been saturated in a particular region of the atmosphere.
Abstract: A technique for diagnosing the mechanisms that control the humidity in a general circulation model (GCM) or observationally derived meteorological analysis dataset is presented. The technique involves defining a large number of tracers, each of which represents air that has last been saturated in a particular region of the atmosphere. The time-mean tracer fields show the typical pathways that air parcels take between one occurrence of saturation and the next. The tracers provide useful information about how different regions of the atmosphere influence the humidity elsewhere. Because saturation vapor pressure is a function only of temperature and assuming mixing ratio is conserved for unsaturated parcels, these tracer fields can also be used together with the temperature field to reconstruct the water vapor field. The technique is first applied to an idealized GCM in which the dynamics are dry and forced using the Held–Suarez thermal relaxation, but the model carries a passive waterlike tracer th...

105 citations

Journal ArticleDOI
TL;DR: The first results are presented from the RCEMIP ensemble of more than 30 models, which includes atmospheric general circulation models, single column models, cloud‐resolving models (CRMs), large eddy simulations (LES), and global cloud‐resolution models (GCRMs).
Abstract: The Radiative-Convective Equilibrium Model Intercomparison Project (RCEMIP) is an intercomparison of multiple types of numerical models configured in radiative-convective equilibrium (RCE). RCE is an idealization of the tropical atmosphere that has long been used to study basic questions in climate science. Here, we employ RCE to investigate the role that clouds and convective activity play in determining cloud feedbacks, climate sensitivity, the state of convective aggregation, and the equilibrium climate. RCEMIP is unique among intercomparisons in its inclusion of a wide range of model types, including atmospheric general circulation models (GCMs), single column models (SCMs), cloud-resolving models (CRMs), large eddy simulations (LES), and global cloud-resolving models (GCRMs). The first results are presented from the RCEMIP ensemble of more than 30 models. While there are large differences across the RCEMIP ensemble in the representation of mean profiles of temperature, humidity, and cloudiness, in a majority of models anvil clouds rise, warm, and decrease in area coverage in response to an increase in sea surface temperature (SST). Nearly all models exhibit self-aggregation in large domains and agree that self-aggregation acts to dry and warm the troposphere, reduce high cloudiness, and increase cooling to space. The degree of self-aggregation exhibits no clear tendency with warming. There is a wide range of climate sensitivities, but models with parameterized convection tend to have lower climate sensitivities than models with explicit convection. In models with parameterized convection, aggregated simulations have lower climate sensitivities than unaggregated simulations.

105 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887