scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
TL;DR: Alternative techniques drawn from the fields of resistant, robust and non-parametric statistics are usually much less affected by the presence of ‘outliers’ and other forms of non-normality and are presented.
Abstract: Basic traditional parametric statistical techniques are used widely in climatic studies for characterizing the level (central tendency) and variability of variables, assessing linear relationships (including trends), detection of climate change, quality control and assessment, identification of extreme events, etc. These techniques may involve estimation of parameters such as the mean (a measure of location), variance (a measure of scale) and correlatiodregression coefficients (measures of linear association); in addition, it is often desirable to estimate the statistical significance of the difference between estimates of the mean from two different samples as well as the significance of estimated measures of association. The validity of these estimates is based on underlying assumptions that sometimes are not met by real climate data. Two of these assumptions are addressed here: normality and homogeneity (and as a special case statistical stationarity); in particular, contamination from a relatively few ‘outlying values’ may greatly distort the estimates. Sometimes these common techniques are used in order to identify outliers; ironically they may fail because of the presence of the outliers! Alternative techniques drawn from the fields of resistant, robust and non-parametric statistics are usually much less affected by the presence of ‘outliers’ and other forms of non-normality. Some of the theoretical basis for the alternative techniques is presented as motivation for their use and to provide quantitative measures for their performance as compared with the traditional techniques that they may replace. Although this work is by no means exhaustive, typically a couple of suitable alternatives are presented for each of the common statistical quantitiedtests mentioned above. All of the technical details needed to apply these techniques are presented in an extensive appendix. With regard to the issue of homogeneity of the climate record, a powerfd non-parametric technique is introduced for the objective identification of ‘change-points’ (discontinuities) in the mean. These may arise either naturally (abrupt climate change) or as the result of errors or changes in instruments, recording practices, data transmission, processing, etc. The change-point test is able to identify multiple discontinuities and requires no ‘metadata’ or comparison with neighbouring stations; these are important considerations because instrumental changes are not always documented and, particularly with regard to radiosonde observations, suitable neighbouring stations for ‘buddy checks’ may not exist. However, when such auxiliary information is available it may be used as independent confirmation of the artificial nature of the discontinuities. The application and practical advantages of these alternative techniques are demonstrated using primarily actual radiosonde station data and in a few cases using some simulated (artificial) data as well. The ease with which suitable examples were obtained from the radiosonde archive begs for serious consideration of these techniques in the analysis of climate data.

574 citations

Journal ArticleDOI
TL;DR: In this article, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration.
Abstract: [ 1] As part of the Coupled Model Intercomparison Project, integrations with a common design have been undertaken with eleven different climate models to compare the response of the Atlantic thermohaline circulation ( THC) to time-dependent climate change caused by increasing atmospheric CO2 concentration. Over 140 years, during which the CO2 concentration quadruples, the circulation strength declines gradually in all models, by between 10 and 50%. No model shows a rapid or complete collapse, despite the fairly rapid increase and high final concentration of CO2. The models having the strongest overturning in the control climate tend to show the largest THC reductions. In all models, the THC weakening is caused more by changes in surface heat flux than by changes in surface water flux. No model shows a cooling anywhere, because the greenhouse warming is dominant.

574 citations

Journal ArticleDOI
TL;DR: In this paper, the principal modes of month-to-month variability of the wintertime storm tracks over the North Pacific and North Atlantic are identified by empirical orthogonal function analysis of the root-mean-square statistics of bandpass (2.5-6 day) filtered geopotential height data for 19 yr.
Abstract: The principal modes of month-to-month variability of the wintertime storm tracks over the North Pacific and North Atlantic are identified by empirical orthogonal function analysis of the root-mean-square statistics of bandpass (2.5–6 day) filtered geopotential height data for 19 yr. One of the two leading modes depicts fluctuations in the level of synoptic-scale activity without any noticeable spatial displacement of the storm track axes, whereas the other mode is associated with meridional shifts of the storm tracks from their time-averaged positions. Higher order modes are indicative of diversion or truncation of cyclone tracks in particular geographical regions. It is demonstrated that the leading storm track modes are linked to some of the best-known monthly averaged teleconnection patterns. The dipolar western Pacific and western Atlantic patterns for the monthly mean flow are seen to be accompanied by marked changes in the intensity of the storm tracks over the western oceans, whereas the m...

570 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements.
Abstract: . We evaluate black carbon (BC) model predictions from the AeroCom model intercomparison project by considering the diversity among year 2000 model simulations and comparing model predictions with available measurements. These model-measurement intercomparisons include BC surface and aircraft concentrations, aerosol absorption optical depth (AAOD) retrievals from AERONET and Ozone Monitoring Instrument (OMI) and BC column estimations based on AERONET. In regions other than Asia, most models are biased high compared to surface concentration measurements. However compared with (column) AAOD or BC burden retreivals, the models are generally biased low. The average ratio of model to retrieved AAOD is less than 0.7 in South American and 0.6 in African biomass burning regions; both of these regions lack surface concentration measurements. In Asia the average model to observed ratio is 0.7 for AAOD and 0.5 for BC surface concentrations. Compared with aircraft measurements over the Americas at latitudes between 0 and 50N, the average model is a factor of 8 larger than observed, and most models exceed the measured BC standard deviation in the mid to upper troposphere. At higher latitudes the average model to aircraft BC ratio is 0.4 and models underestimate the observed BC loading in the lower and middle troposphere associated with springtime Arctic haze. Low model bias for AAOD but overestimation of surface and upper atmospheric BC concentrations at lower latitudes suggests that most models are underestimating BC absorption and should improve estimates for refractive index, particle size, and optical effects of BC coating. Retrieval uncertainties and/or differences with model diagnostic treatment may also contribute to the model-measurement disparity. Largest AeroCom model diversity occurred in northern Eurasia and the remote Arctic, regions influenced by anthropogenic sources. Changing emissions, aging, removal, or optical properties within a single model generated a smaller change in model predictions than the range represented by the full set of AeroCom models. Upper tropospheric concentrations of BC mass from the aircraft measurements are suggested to provide a unique new benchmark to test scavenging and vertical dispersion of BC in global models.

558 citations

Journal ArticleDOI
13 Apr 2001-Science
TL;DR: It is suggested that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.
Abstract: We compared the temporal variability of the heat content of the world ocean, of the global atmosphere, and of components of Earth's cryosphere during the latter half of the 20th century. Each component has increased its heat content (the atmosphere and the ocean) or exhibited melting (the cryosphere). The estimated increase of observed global ocean heat content (over the depth range from 0 to 3000 meters) between the 1950s and 1990s is at least one order of magnitude larger than the increase in heat content of any other component. Simulation results using an atmosphere-ocean general circulation model that includes estimates of the radiative effects of observed temporal variations in greenhouse gases, sulfate aerosols, solar irradiance, and volcanic aerosols over the past century agree with our observation-based estimate of the increase in ocean heat content. The results we present suggest that the observed increase in ocean heat content may largely be due to the increase of anthropogenic gases in Earth's atmosphere.

549 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887