scispace - formally typeset
Search or ask a question
Institution

Geophysical Fluid Dynamics Laboratory

FacilityPrinceton, New Jersey, United States
About: Geophysical Fluid Dynamics Laboratory is a facility organization based out in Princeton, New Jersey, United States. It is known for research contribution in the topics: Climate model & Climate change. The organization has 525 authors who have published 2432 publications receiving 264545 citations. The organization is also known as: GFDL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a limited double-moment scheme for bulk microphysics is presented for cloud-system-resolving models (CSRMs), which predicts the average size of cloud droplets and crystals, which is important for representing the radiative impact of clouds on the climate system.
Abstract: A novel type of limited double-moment scheme for bulk microphysics is presented here for cloud-systemresolving models (CSRMs). It predicts the average size of cloud droplets and crystals, which is important for representing the radiative impact of clouds on the climate system. In this new scheme, there are interactive components for ice nuclei (IN) and cloud condensation nuclei (CCN). For cloud ice, the processes of primary ice nucleation, Hallett–Mossop (HM) multiplication of ice particles (secondary ice production), and homogeneous freezing of aerosols and droplets provide the source of ice number. The preferential evaporation of smaller droplets during homogeneous freezing of cloud liquid is represented for the first time. Primary and secondary (i.e., in cloud) droplet nucleation are also represented, by predicting the supersaturation as a function of the vertical velocity and local properties of cloud liquid. A linearized scheme predicts the supersaturation, explicitly predicting rates of condensation and vapor deposition onto liquid (cloud liquid, rain) and ice (cloud ice, snow, graupel) species. The predicted supersaturation becomes the input for most nucleation processes, including homogeneous aerosol freezing and secondary droplet activation. Comparison of the scheme with available aircraft and satellite data is performed for two cases of deep convection over the tropical western Pacific Ocean. Sensitivity tests are performed with respect to a range of nucleation processes. The HM process of ice particle multiplication has an important impact on the domain-wide ice concentration in the lower half of the mixed-phase region, especially when a lack of upper-level cirrus suppresses homogeneous freezing. Homogeneous freezing of droplets and, especially, aerosols is found to be the key control on number and sizes of cloud particles in the simulated cloud ensemble. Preferential evaporation of smaller droplets during homogeneous freezing produces a major impact on ice concentrations aloft. Aerosols originating from the remote free troposphere become activated in deep convective updrafts and produce most of the supercooled cloud droplets that freeze homogeneously aloft. Homogeneous aerosol freezing is found to occur only in widespread regions of weak ascent while homogeneous droplet freezing is restricted to deep convective updrafts. This means that homogeneous aerosol freezing can produce many more crystals than homogeneous droplet freezing, if conditions in the upper troposphere are favorable. These competing mechanisms of homogeneous freezing determine the overall response of the ice concentration to environmental CCN concentrations in the simulated cloud ensemble. The corresponding sensitivity with respect to environmental IN concentrations is much lower. Nevertheless, when extremely high concentrations of IN are applied, that are typical for plumes of desert dust, the supercooled cloud liquid is completely eliminated in the upper half of the mixed phase region. This shuts down the process of homogeneous droplet freezing.

181 citations

Journal ArticleDOI
TL;DR: In this paper, speculative arguments are presented that describe how radiative and dynamical constraints conspire to determine the height of the tropopause and the tropospheric static stability in midlatitudes and in the tropics.
Abstract: Speculative arguments are, presented that describe how radiative and dynamical constraints conspire to determine the height of the tropopause and the tropospheric static stability in midlatitudes and in the tropics. The arguments suggest an explanation for the observation that climatological isentropic slopes in midlatitudes are close to the critical slope required for baroclinic instability in a two-layer model.

181 citations

Journal ArticleDOI
TL;DR: In this paper, an intercomparison of the tropical behavior of 17 coupled ocean-atmosphere models in which at least one component may be termed a general circulation model (GCM) is provided.
Abstract: An intercomparison is undertaken of the tropical behavior of 17 coupled ocean-atmosphere models in which at least one component may be termed a general circulation model (GCM). The aim is to provide a taxonomy—a description and rough classification—of behavior across the ensemble of models, focusing on interannual variability. The temporal behavior of the sea surface temperature (SST) field along the equator is presented for each model, SST being chosen as the primary variable for intercomparison due to its crucial role in mediating the coupling and because it is a sensitive indicator of climate drift. A wide variety of possible types of behavior are noted among the models. Models with substantial interannual tropical variability may be roughly classified into cases with propagating SST anomalies and cases in which the SST anomalies develop in place. A number of the models also exhibit significant drift with respect to SST climatology. However, there is not a clear relationship between climate drift and the presence or absence of interannual oscillations. In several cases, the mode of climate drift within the tropical Pacific appears to involve coupled feedback mechanisms similar to those responsible for El Nino variability. Implications for coupled-model development and for climate prediction on seasonal to interannual time scales are discussed. Overall, the results indicate considerable sensitivity of the tropical coupled ocean-atmosphere system and suggest that the simulation of the warm-pool/cold-tongue configuration in the equatorial Pacific represents a challenging test for climate model parameterizations.

181 citations

Journal ArticleDOI
TL;DR: In this paper, the authors employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks.
Abstract: . Formic acid (HCOOH) is one of the most abundant acids in the atmosphere, with an important influence on precipitation chemistry and acidity. Here we employ a chemical transport model (GEOS-Chem CTM) to interpret recent airborne and ground-based measurements over the US Southeast in terms of the constraints they provide on HCOOH sources and sinks. Summertime boundary layer concentrations average several parts-per-billion, 2–3× larger than can be explained based on known production and loss pathways. This indicates one or more large missing HCOOH sources, and suggests either a key gap in current understanding of hydrocarbon oxidation or a large, unidentified, direct flux of HCOOH. Model-measurement comparisons implicate biogenic sources (e.g., isoprene oxidation) as the predominant HCOOH source. Resolving the unexplained boundary layer concentrations based (i) solely on isoprene oxidation would require a 3× increase in the model HCOOH yield, or (ii) solely on direct HCOOH emissions would require approximately a 25× increase in its biogenic flux. However, neither of these can explain the high HCOOH amounts seen in anthropogenic air masses and in the free troposphere. The overall indication is of a large biogenic source combined with ubiquitous chemical production of HCOOH across a range of precursors. Laboratory work is needed to better quantify the rates and mechanisms of carboxylic acid production from isoprene and other prevalent organics. Stabilized Criegee intermediates (SCIs) provide a large model source of HCOOH, while acetaldehyde tautomerization accounts for ~ 15% of the simulated global burden. Because carboxylic acids also react with SCIs and catalyze the reverse tautomerization reaction, HCOOH buffers against its own production by both of these pathways. Based on recent laboratory results, reaction between CH3O2 and OH could provide a major source of atmospheric HCOOH; however, including this chemistry degrades the model simulation of CH3OOH and NOx : CH3OOH. Developing better constraints on SCI and RO2 + OH chemistry is a high priority for future work. The model neither captures the large diurnal amplitude in HCOOH seen in surface air, nor its inverted vertical gradient at night. This implies a substantial bias in our current representation of deposition as modulated by boundary layer dynamics, and may indicate an HCOOH sink underestimate and thus an even larger missing source. A more robust treatment of surface deposition is a key need for improving simulations of HCOOH and related trace gases, and our understanding of their budgets.

180 citations

Journal ArticleDOI
TL;DR: In this paper, the authors comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture.
Abstract: Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

178 citations


Authors

Showing all 546 results

NameH-indexPapersCitations
Alan Robock9034627022
Isaac M. Held8821537064
Larry W. Horowitz8525328706
Gabriel A. Vecchi8428231597
Toshio Yamagata8329427890
Li Zhang8172726684
Ronald J. Stouffer8015356412
David Crisp7932818440
Thomas L. Delworth7617826109
Syukuro Manabe7612925366
Stephen M. Griffies6820218065
John Wilson6648722041
Arlene M. Fiore6516817368
John P. Dunne6418917987
Raymond T. Pierrehumbert6219214685
Network Information
Related Institutions (5)
National Center for Atmospheric Research
19.7K papers, 1.4M citations

96% related

Cooperative Institute for Research in Environmental Sciences
6.2K papers, 426.7K citations

92% related

Met Office
8.5K papers, 463.7K citations

92% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

91% related

Lamont–Doherty Earth Observatory
8K papers, 504.5K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202316
202236
2021106
202096
2019131
201887