scispace - formally typeset
Search or ask a question
Institution

ICFO – The Institute of Photonic Sciences

FacilityBarcelona, Spain
About: ICFO – The Institute of Photonic Sciences is a facility organization based out in Barcelona, Spain. It is known for research contribution in the topics: Quantum & Quantum entanglement. The organization has 872 authors who have published 1965 publications receiving 56273 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work demonstrates electrically stimulated photon emission from individual atomic defects in monolayer WS2 and directly correlate the emission with the local atomic and electronic structure.
Abstract: Optical quantum emitters are a key component of quantum devices for metrology and information processing. In particular, atomic defects in 2D materials can operate as optical quantum emitters that overcome current limitations of conventional bulk emitters, such as yielding a high single-photon generation rate and offering surface accessibility for excitation and photon extraction. Here we demonstrate electrically stimulated photon emission from individual point defects in a 2D material. Specifically, by bringing a metallic tip into close proximity to a discrete defect state in the band gap of WS2, we induce inelastic tip-to-defect electron tunneling with an excess of transition energy carried by the emitted photons. We gain atomic spatial control over the emission through the position of the tip, while the spectral characteristics are highly customizable by varying the applied tip-sample voltage. Atomically resolved emission maps of individual sulfur vacancies and chromium substituent defects are in excellent agreement with the electron density of their respective defect orbitals as imaged via conventional elastic scanning tunneling microscopy. Inelastic charge-carrier injection into localized defect states of 2D materials thus provides a powerful platform for electrically driven, broadly tunable, atomic-scale single-photon sources.

34 citations

Journal ArticleDOI
TL;DR: Spectroscopic data indicate that apart from dopant compensation and filling of dopant induced trap states, a fraction of the Bi ionized electrons feeds the QD core states resulting in n-doping of the semiconductor, confirming reported work on devices based on such doped CQD material.
Abstract: We report on an extensive spectroscopic investigation of the impact of substitutional doping on the optoelectronic properties of PbS colloidal quantum dot (CQD) solids. N-doping is provided by Bi incorporation during CQD synthesis as well as post-synthetically via cation exchange reactions. The spectroscopic data indicate a systematic quenching of the excitonic absorption and luminescence and the appearance of two dopant-induced contributions at lower energies to the CQD free exciton. Temperature-dependent photoluminescence indicates the presence of temperature-activated detrapping and trapping processes of photoexcitations for the films doped during and after synthesis, respectively. The data are consistent with a preferential incorporation of the dopants at the QDs surface in the case of the cation-exchange treated films versus a more uniform doping profile in the case of in-situ Bi incorporation during synthesis. Time-resolved experiments indicate the presence of fast dopant- and excitation-dependent recombination channels attributed to Auger recombination of negatively charged excitons, formed due to excess of dopant electrons. The data indicate that apart from dopant compensation and filling of dopant induced trap states, a fraction of the Bi ionized electrons feeds the QD core states resulting in n-doping of the semiconductor, confirming reported work on devices based on such doped CQD material.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping.
Abstract: We present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascu\'es-Pironio-Ac\'{\i}n hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario. Then we use it to show how the nonlocal power of measurements can be activated in a network: there exist measuring devices that, despite being unable to generate nonlocal correlations in the standard Bell scenario, provide a classical-quantum separation in an entanglement swapping configuration.

34 citations

Journal ArticleDOI
TL;DR: This Letter investigates the storage of optical pulses as collective Rydberg atomic excitations in a cold atomic ensemble and experimentally demonstrates that storing a probe pulse as Ryd Berg polaritons strongly enhances the Rydburg mediated interaction compared to the slow propagation case.
Abstract: The combination of electromagnetically induced transparency with the nonlinear interaction between Rydberg atoms provides an effective interaction between photons. In this Letter, we investigate the storage of optical pulses as collective Rydberg atomic excitations in a cold atomic ensemble. By measuring the dynamics of the stored Rydberg polaritons, we experimentally demonstrate that storing a probe pulse as Rydberg polaritons strongly enhances the Rydberg mediated interaction compared to the slow propagation case. We show that the process is characterized by two time scales. At short storage times, we observe a strong enhancement of the interaction due to the reduction of the Rydberg polariton group velocity down to 0. For longer storage times, we observe a further, weaker enhancement dominated by Rydberg induced dephasing of the multiparticle components of the state. In this regime, we observe a nonlinear dependence of the Rydberg polariton coherence time with the input photon number. Our results have direct consequences in Rydberg quantum optics and may enable the test of new theories of strongly interacting Rydberg systems.

34 citations

Journal ArticleDOI
TL;DR: The dynamical control of the Purcell enhanced emission of a small ensemble of erbium ions doped into a nanoparticle is demonstrated and opens prospects for the realization of efficient nanoscale quantum interfaces between solid-state spins and single telecom photons with controllable waveform.
Abstract: The interaction of single quantum emitters with an optical cavity enables the realization of efficient spin-photon interfaces, an essential resource for quantum networks. The dynamical control of the spontaneous emission rate of quantum emitters in cavities has important implications in quantum technologies, e.g. for shaping the emitted photons waveform, for generating quantum entanglement, or for driving coherently the optical transition while preventing photon emission. Here we demonstrate the dynamical control of the Purcell enhanced emission of a small ensemble of erbium ions doped into nanoparticles. By embedding the doped nanoparticles into a fully tunable high finesse fiber based optical microcavity, we show that we can tune the cavity on- and out of-resonance by controlling its length with sub-nanometer precision, on a time scale more than two orders of magnitude faster than the natural lifetime of the erbium ions. This allows us to shape in real time the Purcell enhanced emission of the ions and to achieve full control over the emitted photons' waveforms. This capability opens prospects for the realization of efficient nanoscale quantum interfaces between solid-state spins and single telecom photons with controllable waveform, and for the realization of quantum gates between rare-earth ion qubits coupled to an optical cavity.

34 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Maciej Lewenstein10493147362
F. Javier García de Abajo7535130221
Antonio Acín7232419984
Frank H. L. Koppens6923932754
Romain Quidant6824818262
Leszek Kaczmarek6730215985
Sefaattin Tongay6525420628
Zhipei Sun6527027030
Lluis Torner6456617978
Georg Heinze6335416391
Yaroslav V. Kartashov5448711174
Francesco Ricci5429515492
Gerasimos Konstantatos5316019627
Niek F. van Hulst5317812400
Turgut Durduran5328910525
Network Information
Related Institutions (5)
SLAC National Accelerator Laboratory
9.2K papers, 559.6K citations

85% related

Istituto Italiano di Tecnologia
14.5K papers, 437.5K citations

83% related

University of Jena
45.1K papers, 1.4M citations

83% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202261
2021269
2020308
2019287
2018285