scispace - formally typeset
Search or ask a question

Showing papers by "ICFO – The Institute of Photonic Sciences published in 2019"


Journal ArticleDOI
01 Oct 2019-Nature
TL;DR: In this paper, the authors report the fabrication of magic-angle twisted bilayer graphene devices with highly uniform twist angles, which enables the observation of new superconducting domes, orbital magnets and Chern insulating states.
Abstract: Superconductivity can occur under conditions approaching broken-symmetry parent states1. In bilayer graphene, the twisting of one layer with respect to the other at ‘magic’ twist angles of around 1 degree leads to the emergence of ultra-flat moire superlattice minibands. Such bands are a rich and highly tunable source of strong-correlation physics2–5, notably superconductivity, which emerges close to interaction-induced insulating states6,7. Here we report the fabrication of magic-angle twisted bilayer graphene devices with highly uniform twist angles. The reduction in twist-angle disorder reveals the presence of insulating states at all integer occupancies of the fourfold spin–valley degenerate flat conduction and valence bands—that is, at moire band filling factors ν = 0, ±1, ±2, ±3. At ν ≈ −2, superconductivity is observed below critical temperatures of up to 3 kelvin. We also observe three new superconducting domes at much lower temperatures, close to the ν = 0 and ν = ±1 insulating states. Notably, at ν = ± 1 we find states with non-zero Chern numbers. For ν = −1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field greater than 3.6 tesla is applied, which is consistent with a field-driven phase transition. Our study shows that broken-symmetry states, interaction-driven insulators, orbital magnets, states with non-zero Chern numbers and superconducting domes occur frequently across a wide range of moire flat band fillings, including close to charge neutrality. This study provides a more detailed view of the phenomenology of magic-angle twisted bilayer graphene, adding to our evolving understanding of its emergent properties. The fabrication of magic-angle twisted bilayer graphene devices with highly uniform twist angles enables the observation of new superconducting domes, orbital magnets and Chern insulating states.

968 citations


Journal ArticleDOI
01 Sep 2019-Nature
TL;DR: The opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems are reviewed, and the prospects for computational and non-computational applications are considered.
Abstract: The development of silicon semiconductor technology has produced breakthroughs in electronics—from the microprocessor in the late 1960s to early 1970s, to automation, computers and smartphones—by downscaling the physical size of devices and wires to the nanometre regime. Now, graphene and related two-dimensional (2D) materials offer prospects of unprecedented advances in device performance at the atomic limit, and a synergistic combination of 2D materials with silicon chips promises a heterogeneous platform to deliver massively enhanced potential based on silicon technology. Integration is achieved via three-dimensional monolithic construction of multifunctional high-rise 2D silicon chips, enabling enhanced performance by exploiting the vertical direction and the functional diversification of the silicon platform for applications in opto-electronics and sensing. Here we review the opportunities, progress and challenges of integrating atomically thin materials with silicon-based nanosystems, and also consider the prospects for computational and non-computational applications. Progress in integrating atomically thin two-dimensional materials with silicon-based technology is reviewed, together with the associated opportunities and challenges, and a roadmap for future applications is presented.

804 citations


Journal ArticleDOI
TL;DR: This study shows that broken-symmetry states, interaction-driven insulators, orbital magnets, states with non-zero Chern numbers and superconducting domes occur frequently across a wide range of moiré flat band fillings, including close to charge neutrality.
Abstract: Superconductivity often occurs close to broken-symmetry parent states and is especially common in doped magnetic insulators. When twisted close to a magic relative orientation angle near 1 degree, bilayer graphene has flat moire superlattice minibands that have emerged as a rich and highly tunable source of strong correlation physics, notably the appearance of superconductivity close to interaction-induced insulating states. Here we report on the fabrication of bilayer graphene devices with exceptionally uniform twist angles. We show that the reduction in twist angle disorder reveals insulating states at all integer occupancies of the four-fold spin/valley degenerate flat conduction and valence bands, i.e. at moire band filling factors nu = 0, +(-) 1, +(-) 2, +(-) 3, and superconductivity below critical temperatures as high as 3 K close to - 2 filling. We also observe three new superconducting domes at much lower temperatures close to the nu = 0 and nu = +(-) 1 insulating states. Interestingly, at nu = +(-) 1 we find states with non-zero Chern numbers. For nu = - 1 the insulating state exhibits a sharp hysteretic resistance enhancement when a perpendicular magnetic field above 3.6 tesla is applied, consistent with a field driven phase transition. Our study shows that symmetry-broken states, interaction driven insulators, and superconducting domes are common across the entire moire flat bands, including near charge neutrality.

351 citations


Posted Content
TL;DR: In this article, the authors proposed a 2D-photodetectors based on 2D hybrid systems combined with other material platforms such as quantum dots, perovskites, organic materials, or plasmonic nanostructures yield ultra-sensitive and broadband light detection capabilities.
Abstract: Conventional semiconductors such as silicon and InGaAs based photodetectors have encountered a bottleneck in modern electronics and photonics in terms of spectral coverage, low resolution, non-transparency, non-flexibility and CMOS-incompatibility. New emerging 2D materials such as graphene, TMDs and their hybrid systems thereof, however, can circumvent all these issues benefitting from mechanically flexibility, extraordinary electronic and optical properties, as well as wafer-scale production and integration. Heterojunction-based photodiodes based on 2D materials offer ultrafast and broadband response from visible to far infrared range. Phototransistors based on 2D hybrid systems combined with other material platforms such as quantum dots, perovskites, organic materials, or plasmonic nanostructures yield ultrasensitive and broadband light detection capabilities. Notably the facile integration of 2D-photodetectors on silicon photonics or CMOS platforms paves the way towards high performance, low-cost, broadband sensing and imaging modalities.

248 citations


Journal ArticleDOI
28 Feb 2019-Science
TL;DR: In this paper, the authors found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect.
Abstract: An electrical conductor subjected to a magnetic field exhibits the Hall effect in the presence of current flow. Here, we report a qualitative deviation from the standard behavior in electron systems with high viscosity. We found that the viscous electron fluid in graphene responds to nonquantizing magnetic fields by producing an electric field opposite to that generated by the ordinary Hall effect. The viscous contribution is substantial and identified by studying local voltages that arise in the vicinity of current-injecting contacts. We analyzed the anomaly over a wide range of temperatures and carrier densities and extracted the Hall viscosity, a dissipationless transport coefficient that was long identified theoretically but remained elusive in experiments.

243 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a vision for grapheme-based integrated photonics and present a roadmap of the technological requirements to meet the demands of the datacom and telecom markets.
Abstract: Graphene is an ideal material for optoelectronic applications. Its photonic properties give several advantages and complementarities over Si photonics. For example, graphene enables both electro-absorption and electro-refraction modulation with an electro-optical index change exceeding 10$^{-3}$. It can be used for optical add-drop multiplexing with voltage control, eliminating the current dissipation used for the thermal detuning of microresonators, and for thermoelectric-based ultrafast optical detectors that generate a voltage without transimpedance amplifiers. Here, we present our vision for grapheme-based integrated photonics. We review graphene-based transceivers and compare them with existing technologies. Strategies for improving power consumption, manufacturability and wafer-scale integration are addressed. We outline a roadmap of the technological requirements to meet the demands of the datacom and telecom markets. We show that graphene based integrated photonics could enable ultrahigh spatial bandwidth density , low power consumption for board connectivity and connectivity between data centres, access networks and metropolitan, core, regional and long-haul optical communications.

223 citations


Journal ArticleDOI
01 May 2019-Nature
TL;DR: The dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array is observed through the precise positioning of artificial atoms realized as superconducting qubits along a one-dimensional waveguide, reaching the regime of strong coupling.
Abstract: It has long been recognized that atomic emission of radiation is not an immutable property of an atom, but is instead dependent on the electromagnetic environment1 and, in the case of ensembles, also on the collective interactions between the atoms2–6. In an open radiative environment, the hallmark of collective interactions is enhanced spontaneous emission—super-radiance2—with non-dissipative dynamics largely obscured by rapid atomic decay7. Here we observe the dynamical exchange of excitations between a single artificial atom and an entangled collective state of an atomic array9 through the precise positioning of artificial atoms realized as superconducting qubits8 along a one-dimensional waveguide. This collective state is dark, trapping radiation and creating a cavity-like system with artificial atoms acting as resonant mirrors in the otherwise open waveguide. The emergent atom–cavity system is shown to have a large interaction-to-dissipation ratio (cooperativity exceeding 100), reaching the regime of strong coupling, in which coherent interactions dominate dissipative and decoherence effects. Achieving strong coupling with interacting qubits in an open waveguide provides a means of synthesizing multi-photon dark states with high efficiency and paves the way for exploiting correlated dissipation and decoherence-free subspaces of quantum emitter arrays at the many-body level10–13. An array of superconducting qubits in an open one-dimensional waveguide is precisely controlled to create an artificial quantum cavity–atom system that reaches the strong-coupling regime without substantial decoherence.

209 citations


Journal ArticleDOI
TL;DR: Spatially resolved electron microscopy techniques, such as cathodoluminescence and electron energy-loss spectroscopy can provide high space, energy and time resolutions for the structural and optical characterization of materials; this Review discusses recent progress and future directions in the field of nanophotonics.
Abstract: Progress in electron-beam spectroscopies has recently enabled the study of optical excitations with combined space, energy and time resolution in the nanometre, millielectronvolt and femtosecond domain, thus providing unique access into nanophotonic structures and their detailed optical responses. These techniques rely on ~1–300 keV electron beams focused at the sample down to sub-nanometre spots, temporally compressed in wavepackets a few femtoseconds long, and in some cases controlled by ultrafast light pulses. The electrons undergo energy losses and gains (also giving rise to cathodoluminescence light emission), which are recorded to reveal the optical landscape along the beam path. This Review portraits these advances, with a focus on coherent excitations, emphasizing the increasing level of control over the electron wavefunctions and ensuing applications in the study and technological use of optically resonant modes and polaritons in nanoparticles, 2D materials and engineered nanostructures. Spatially resolved electron microscopy techniques, such as cathodoluminescence and electron energy-loss spectroscopy can provide high space, energy and time resolutions for the structural and optical characterization of materials; this Review discusses recent progress and future directions in the field of nanophotonics.

185 citations


Journal ArticleDOI
28 Jun 2019-Science
TL;DR: In this article, the authors introduced a property of light beams, manifested as a temporal OAM variation along a pulse: the self-torque of light, which is found in diverse physical systems (i.e., electrodynamics and general relativity).
Abstract: Light fields carrying orbital angular momentum (OAM) provide powerful capabilities for applications in optical communications, microscopy, quantum optics, and microparticle manipulation. We introduce a property of light beams, manifested as a temporal OAM variation along a pulse: the self-torque of light. Although self-torque is found in diverse physical systems (i.e., electrodynamics and general relativity), it was not realized that light could possess such a property. We demonstrate that extreme-ultraviolet self-torqued beams arise in high-harmonic generation driven by time-delayed pulses with different OAM. We monitor the self-torque of extreme-ultraviolet beams through their azimuthal frequency chirp. This class of dynamic-OAM beams provides the ability for controlling magnetic, topological, and quantum excitations and for manipulating molecules and nanostructures on their natural time and length scales.

168 citations


Journal ArticleDOI
TL;DR: PbS quantum dot ternary blends enable the realization of high-efficiency colloidal quantum dot infrared light-emitting diodes with an open circuit voltage that approaches their radiative limit.
Abstract: Colloidal quantum dot (CQD) light-emitting diodes (LEDs) deliver a compelling performance in the visible, yet infrared CQD LEDs underperform their visible-emitting counterparts, largely due to their low photoluminescence quantum efficiency. Here we employ a ternary blend of CQD thin film that comprises a binary host matrix that serves to electronically passivate as well as to cater for an efficient and balanced carrier supply to the emitting quantum dot species. In doing so, we report infrared PbS CQD LEDs with an external quantum efficiency of ~7.9% and a power conversion efficiency of ~9.3%, thanks to their very low density of trap states, on the order of 1014 cm−3, and very high photoluminescence quantum efficiency in electrically conductive quantum dot solids of more than 60%. When these blend devices operate as solar cells they deliver an open circuit voltage that approaches their radiative limit thanks to the synergistic effect of the reduced trap-state density and the density of state modification in the nanocomposite. PbS quantum dot ternary blends enable the realization of high-efficiency colloidal quantum dot infrared light-emitting diodes

157 citations


Journal ArticleDOI
TL;DR: This work demonstrates a new class of flexible and transparent wearables based on graphene sensitized with semiconducting quantum dots (GQD) that are able to monitor vital health signs noninvasively, including heart rate, arterial oxygen saturation (SpO2), and respiratory rate.
Abstract: Wearable health and wellness trackers based on optical detection are promising candidates for public health uses due to their noninvasive tracking of vital health signs. However, so far, the use of rigid technologies hindered the ultimate performance and form factor of the wearable. Here, we demonstrate a new class of flexible and transparent wearables based on graphene sensitized with semiconducting quantum dots (GQD). We show several prototype wearable devices that are able to monitor vital health signs noninvasively, including heart rate, arterial oxygen saturation (SpO2), and respiratory rate. Operation with ambient light is demonstrated, offering low-power consumption. Moreover, using heterogeneous integration of a flexible ultraviolet (UV)–sensitive photodetector with a near-field communication circuit board allows wireless communication and power transfer between the photodetectors and a smartphone, offering battery-free operation. This technology paves the way toward seamlessly integrated wearables, and empowers the user through wireless probing of the UV index.

Journal ArticleDOI
TL;DR: In this article, the authors reported label-free identification of gas molecules SO2, NO2, N2O, and NO by detecting their rotational-vibrational modes using graphene plasmon.
Abstract: Identification of gas molecules plays a key role a wide range of applications extending from healthcare to security. However, the most widely used gas nano-sensors are based on electrical approaches or refractive index sensing, which typically are unable to identify molecular species. Here, we report label-free identification of gas molecules SO2, NO2, N2O, and NO by detecting their rotational-vibrational modes using graphene plasmon. The detected signal corresponds to a gas molecule layer adsorbed on the graphene surface with a concentration of 800 zeptomole per μm2, which is made possible by the strong field confinement of graphene plasmons and high physisorption of gas molecules on the graphene nanoribbons. We further demonstrate a fast response time (<1 min) of our devices, which enables real-time monitoring of gaseous chemical reactions. The demonstration and understanding of gas molecule identification using graphene plasmonic nanostructures open the door to various emerging applications, including in-breath diagnostics and monitoring of volatile organic compounds. Identification of gas molecules is crucial in healthcare and security applications. Here the authors achieve label-free identification of SO2, NO2, N2O, and NO gas molecules by detecting their rotational-vibrational modes using graphene nanoribbon plasmons.

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate plasmons in few-nanometre-thick gold UTMFs, with clear evidence of new dispersion regimes and large electrical tunability.
Abstract: The physics of electrons, photons and their plasmonic interactions changes greatly when one or more dimensions are reduced down to the nanometre scale1. For example, graphene shows unique electrical, optical and plasmonic properties, which are tunable through gating or chemical doping2–5. Similarly, ultrathin metal films (UTMFs) down to atomic thickness can possess new quantum optical effects6,7, peculiar dielectric properties8 and predicted strong plasmons9,10. However, truly two-dimensional plasmonics in metals has so far been elusive because of the difficulty in producing large areas of sufficiently thin continuous films. Thanks to a deposition technique that allows percolation even at 1 nm thickness, we demonstrate plasmons in few-nanometre-thick gold UTMFs, with clear evidence of new dispersion regimes and large electrical tunability. Resonance peaks at wavelengths of 1.5–5 μm are shifted by hundreds of nanometres and amplitude-modulated by tens of per cent through gating using relatively low voltages. The results suggest ways to use metals in plasmonic applications, such as electro-optic modulation, biosensing and smart windows. Nanometre thick metal films enable electrical tuning of plasmons.

Journal ArticleDOI
TL;DR: In this article, the authors show that correlated insulators at half-filling can reappear in small out-of-plane magnetic fields of 0.4 T, giving rise to quantized Hall states with a Chern number of 2.
Abstract: The coexistence of superconducting and correlated insulating states in magic-angle twisted bilayer graphene prompts fascinating questions about the relationship of these orders. Independent control of the microscopic mechanisms governing these phases could help uncover their individual roles and shed light on their intricate interplay. Here we report on direct tuning of electronic interactions in this system by changing its separation from a metallic screening layer. We observe quenching of correlated insula-tors in devices with screening layer separations that are smaller than a typical Wannier orbital size of 15nm, and with the twist angles slightly deviating from the magic value 1.10 plus(minus) 0.05 degrees. Upon extinction of the insulating orders, the vacated phase space is taken over by superconducting domes that feature critical temperatures comparable to those in the devices with strong insulators. In addition, we find that insulators at half-filling can reappear in small out-of-plane magnetic fields of 0.4 T, giving rise to quantized Hall states with a Chern number of 2. Our study suggests reexamination of the often-assumed mother-child relation between the insulating and superconducting phases in moire graphene, and illustrates a new approach to directly probe microscopic mechanisms of superconductivity in strongly-correlated systems.

Journal ArticleDOI
TL;DR: A novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect is introduced, based on a design that employs a dual-gated, dipolar antenna with a gap of ∼100 nm and a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse is reached.
Abstract: Although the detection of light at terahertz (THz) frequencies is important for a large range of applications, current detectors typically have several disadvantages in terms of sensitivity, speed, operating temperature, and spectral range. Here, we use graphene as a photoactive material to overcome all of these limitations in one device. We introduce a novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a gap of ∼100 nm. This narrow-gap antenna simultaneously creates a pn junction in a graphene channel located above the antenna and strongly concentrates the incoming radiation at this pn junction, where the photoresponse is created. We demonstrate that this novel detector has an excellent sensitivity, with a noise-equivalent power of 80 pW/[Formula: see text] at room temperature, a response time below 30 ns (setup-limited), a high dynamic range (linear power dependence over more than 3 orders of magnitude) and broadband operation (measured range 1.8-4.2 THz, antenna-limited), which fulfills a combination that is currently missing in the state-of-the-art detectors. Importantly, on the basis of the agreement we obtained between experiment, analytical model, and numerical simulations, we have reached a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse, which is very valuable for further detector optimization.

Journal ArticleDOI
TL;DR: In this paper, femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam, and the vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy.
Abstract: Vortex-carrying matter waves, such as chiral electron beams, are of significant interest in both applied and fundamental science. Continuous-wave electron vortex beams are commonly prepared via passive phase masks imprinting a transverse phase modulation on the electron's wavefunction. Here, we show that femtosecond chiral plasmonic near fields enable the generation and dynamic control on the ultrafast timescale of an electron vortex beam. The vortex structure of the resulting electron wavepacket is probed in both real and reciprocal space using ultrafast transmission electron microscopy. This method offers a high degree of scalability to small length scales and a highly efficient manipulation of the electron vorticity with attosecond precision. Besides the direct implications in the investigation of nanoscale ultrafast processes in which chirality plays a major role, we further discuss the perspectives of using this technique to shape the wavefunction of charged composite particles, such as protons, and how it can be used to probe their internal structure.

Journal ArticleDOI
TL;DR: This work unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field–resolved detection at video rates to enable powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.
Abstract: Probing matter with light in the mid-infrared provides unique insight into molecular composition, structure, and function with high sensitivity. However, laser spectroscopy in this spectral region lacks the broadband or tunable light sources and efficient detectors available in the visible or near-infrared. We overcome these challenges with an approach that unites a compact source of phase-stable, single-cycle, mid-infrared pulses with room temperature electric field–resolved detection at video rates. The ultrashort pulses correspond to laser frequency combs that span 3 to 27 μm (370 to 3333 cm−1), and are measured with dynamic range of >106 and spectral resolution as high as 0.003 cm−1. We highlight the brightness and coherence of our apparatus with gas-, liquid-, and solid-phase spectroscopy that extends over spectral bandwidths comparable to thermal or infrared synchrotron sources. This unique combination enables powerful avenues for rapid detection of biological, chemical, and physical properties of matter with molecular specificity.

Journal ArticleDOI
10 Sep 2019-Nature
TL;DR: An analogue quantum simulator based on ultracold atoms in optical lattices and cavity quantum electrodynamics is proposed for the solution of quantum chemistry problems and tested numerically for a simple molecule.
Abstract: Computing the electronic structure of molecules with high precision is a central challenge in the field of quantum chemistry. Despite the success of approximate methods, tackling this problem exactly with conventional computers remains a formidable task. Several theoretical1,2 and experimental3–5 attempts have been made to use quantum computers to solve chemistry problems, with early proof-of-principle realizations done digitally. An appealing alternative to the digital approach is analogue quantum simulation, which does not require a scalable quantum computer and has already been successfully applied to solve condensed matter physics problems6–8. However, not all available or planned setups can be used for quantum chemistry problems, because it is not known how to engineer the required Coulomb interactions between them. Here we present an analogue approach to the simulation of quantum chemistry problems that relies on the careful combination of two technologies: ultracold atoms in optical lattices and cavity quantum electrodynamics. In the proposed simulator, fermionic atoms hopping in an optical potential play the role of electrons, additional optical potentials provide the nuclear attraction, and a single-spin excitation in a Mott insulator mediates the electronic Coulomb repulsion with the help of a cavity mode. We determine the operational conditions of the simulator and test it using a simple molecule. Our work opens up the possibility of efficiently computing the electronic structures of molecules with analogue quantum simulation. An analogue quantum simulator based on ultracold atoms in optical lattices and cavity quantum electrodynamics is proposed for the solution of quantum chemistry problems and tested numerically for a simple molecule.

Journal ArticleDOI
TL;DR: The Strong Field Approximation (SFA) as mentioned in this paper is a method to solve the TDSE, in which the nonperturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory.
Abstract: This paper has been prepared by the Symphony collaboration (University of Warsaw, Uniwersytet Jagiellonski, DESY/CNR and ICFO) on the occasion of the 25th anniversary of the "simple man's models" which underlie most of the phenomena that occur when intense ultrashort laser pulses interact with matter. The phenomena in question include High-Harmonic Generation (HHG), Above-Threshold Ionization (ATI), and Non-Sequential Multielectron Ionization (NSMI). "Simple man's models"provide, both an intuitive basis for understanding the numerical solutions of the time-dependent Schr\"odinger equation, and the motivation for the powerful analytic approximations generally known as the Strong Field Approximation (SFA). In this paper we first review the SFA in the form developed by us in the last 25 years. In this approach SFA is a method to solve the TDSE, in which the non-perturbative interactions are described by including continuum-continuum interactions in a systematic perturbation-like theory. In this review we focus on recent applications of SFA to HHG, ATI and NSMI from multi-electron atoms and from multi-atom molecules. The main novel part of the presented theory concerns generalizations of SFA to: (i) time-dependent treatment of two-electron atoms, allowing for studies of an interplay between Electron Impact Ionization (EII) and Resonant Excitation with Subsequent Ionization (RESI); (ii) time-dependent treatment in the single active electron (SAE) approximation of "large" molecules and targets which are themselves undergoing dynamics during the HHG or ATI process. In particular, we formulate the general expressions for the case of arbitrary molecules, combining input from quantum chemistry and quantum dynamics. We formulate also theory of time-dependent separable molecular potentials to model analytically the dynamics of realistic electronic wave packets for molecules in strong laser fields.a#13; a#13; a#13; We dedicate this work to the memory of Bertrand Carre, who passed away in March 2018 at the age o

Journal ArticleDOI
27 Aug 2019-ACS Nano
TL;DR: In this article, the authors reported high room-temperature mobility in single-layer graphene grown by chemical vapor deposition (CVD) after wet transfer on SiO2 and hexagonal boron nitride (hBN) encapsulation.
Abstract: We report high room-temperature mobility in single-layer graphene grown by chemical vapor deposition (CVD) after wet transfer on SiO2 and hexagonal boron nitride (hBN) encapsulation. By removing contaminations, trapped at the interfaces between single-crystal graphene and hBN, we achieve mobilities up to ∼70000 cm2 V-1 s-1 at room temperature and ∼120 000 cm2 V-1 s-1 at 9K. These are more than twice those of previous wet-transferred graphene and comparable to samples prepared by dry transfer. We also investigate the combined approach of thermal annealing and encapsulation in polycrystalline graphene, achieving room-temperature mobilities of ∼30 000 cm2 V-1 s-1. These results show that, with appropriate encapsulation and cleaning, room-temperature mobilities well above 10 000 cm2 V-1 s-1 can be obtained in samples grown by CVD and transferred using a conventional, easily scalable PMMA-based wet approach.

Journal ArticleDOI
TL;DR: It is shown that every set of incompatible measurements provides an advantage over compatible ones in a suitably chosen quantum state discrimination task and that if the authors take a resource-theory perspective of measurement incompatibility, then the guessing probability in discrimination tasks of this type forms a complete set of monotones that completely characterize the partial order in the resource theory.
Abstract: Some quantum measurements cannot be performed simultaneously; i.e., they are incompatible. Here we show that every set of incompatible measurements provides an advantage over compatible ones in a suitably chosen quantum state discrimination task. This is proven by showing that the robustness of incompatibility, a quantifier of how much noise a set of measurements tolerates before becoming compatible, has an operational interpretation as the advantage in an optimally chosen discrimination task. We also show that if we take a resource-theory perspective of measurement incompatibility, then the guessing probability in discrimination tasks of this type forms a complete set of monotones that completely characterize the partial order in the resource theory. Finally, we make use of previously known relations between measurement incompatibility and Einstein-Podolsky-Rosen steering to also relate the latter with quantum state discrimination.

Journal ArticleDOI
20 Dec 2019
TL;DR: In this article, the authors theoretically investigate fundamental aspects of the interaction of fast electrons with localized optical modes that are made possible by these advances and use a quantum optics description of the optical field to predict that the resulting electron spectra strongly depend on the statistics of the sample excitations (bosonic or fermionic) and their population.
Abstract: Probing optical excitations with nanometer resolution is important for understanding their dynamics and interactions down to the atomic scale. Electron microscopes currently offer the unparalleled ability of rendering spatially resolved electron spectra with combined meV and sub-nm resolution, while the use of ultrafast optical pulses enables fs temporal resolution and exposure of the electrons to ultraintense confined optical fields. Here, we theoretically investigate fundamental aspects of the interaction of fast electrons with localized optical modes that are made possible by these advances. We use a quantum optics description of the optical field to predict that the resulting electron spectra strongly depend on the statistics of the sample excitations (bosonic or fermionic) and their population (Fock, coherent, or thermal), whose autocorrelation functions are directly retrieved from the ratios of electron gain intensities. We further explore feasible experimental scenarios to probe the quantum characteristics of the sampled excitations and their populations. In particular, we present realistic simulations for electron beams interacting with optical cavities infiltrated with optically pumped quantum emitters, which we show to undergo a varied temporal evolution in the cavity mode statistics that causes radical modifications in the transmitted electron spectra depending on pump-electron delay.

Journal ArticleDOI
TL;DR: The theory of quantum thermometry as discussed by the authors is concerned with finding the ultimate bounds and scaling laws that limit the precision of temperature estimation for systems in and out-of-thermal equilibrium.
Abstract: Controlling and measuring the temperature in different devices and platforms that operate in the quantum regime is, without any doubt, essential for any potential application. In this review, we report the most recent theoretical developments dealing with accurate estimation of very low temperatures in quantum systems. Together with the emerging experimental techniques and developments of measurement protocols, the theory of quantum thermometry will decisively impinge and shape the forthcoming quantum technologies. While current quantum thermometric methods differ greatly depending on the experimental platform, the achievable precision, and the temperature range of interest, the theory of quantum thermometry is built under a unifying framework at the crossroads of quantum metrology, open quantum systems, and quantum many-body physics. At a fundamental level, theoretical quantum thermometry is concerned with finding the ultimate bounds and scaling laws that limit the precision of temperature estimation for systems in and out-of-thermal equilibrium. At a more practical level, it provides tools to formulate precise, yet feasible, thermometric protocols for relevant experimental architectures. Last but not least, the theory of quantum thermometry examines genuine quantum features, like entanglement and coherence, for their exploitation in enhanced-resolution thermometry.

Journal ArticleDOI
TL;DR: This work uses flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrates that gSGFETS are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth.
Abstract: Recording infraslow brain signals (<0.1 Hz) with microelectrodes is severely hampered by current microelectrode materials, primarily due to limitations resulting from voltage drift and high electrode impedance. Hence, most recording systems include high-pass filters that solve saturation issues but come hand in hand with loss of physiological and pathological information. In this work, we use flexible epicortical and intracortical arrays of graphene solution-gated field-effect transistors (gSGFETs) to map cortical spreading depression in rats and demonstrate that gSGFETs are able to record, with high fidelity, infraslow signals together with signals in the typical local field potential bandwidth. The wide recording bandwidth results from the direct field-effect coupling of the active transistor, in contrast to standard passive electrodes, as well as from the electrochemical inertness of graphene. Taking advantage of such functionality, we envision broad applications of gSGFET technology for monitoring infraslow brain activity both in research and in the clinic.

Journal ArticleDOI
TL;DR: The recent advances on trapped Bose-Fermi mixtures are described, which allow for a theoretical combination of previous concepts, well illustrating the importance of quantum statistics and inter-particle interactions.
Abstract: Recent theoretical and experimental progress on studying one-dimensional systems of bosonic, fermionic, and Bose-Fermi mixtures of a few ultracold atoms confined in traps is reviewed in the broad context of mesoscopic quantum physics. We pay special attention to limiting cases of very strong or very weak interactions and transitions between them. For bosonic mixtures, we describe the developments in systems of three and four atoms as well as different extensions to larger numbers of particles. We also briefly review progress in the case of spinor Bose gases of a few atoms. For fermionic mixtures, we discuss a special role of spin and present a detailed discussion of the two- and three-atom cases. We discuss the advantages and disadvantages of different computation methods applied to systems with intermediate interactions. In the case of very strong repulsion, close to the infinite limit, we discuss approaches based on effective spin chain descriptions. We also report on recent studies on higher-spin mixtures and inter-component attractive forces. For both statistics, we pay particular attention to impurity problems and mass imbalance cases. Finally, we describe the recent advances on trapped Bose-Fermi mixtures, which allow for a theoretical combination of previous concepts, well illustrating the importance of quantum statistics and inter-particle interactions. Lastly, we report on fundamental questions related to the subject which we believe will inspire further theoretical developments and experimental verification.

Journal ArticleDOI
TL;DR: Gain concentrated along the edge of the insulator can counteract intrinsic losses in such a selective way that the topologically protected edge states become amplified, while bulk modes remain damped.
Abstract: We provide proof-of-principle illustration of lasing in a two-dimensional polariton topological insulator. Topological edge states may arise in a structured polariton microcavity under the combined action of spin-orbit coupling and Zeeman splitting in the magnetic field. Their properties and lifetime are strongly affected by gain. Thus, gain concentrated along the edge of the insulator can counteract intrinsic losses in such a selective way that the topologically protected edge states become amplified, while bulk modes remain damped. When gain is compensated by nonlinear absorption the metastable nonlinear edge states are formed. Taking a triangular structure instead of an infinite edge we observed persistent topological currents accompanied by the time-periodic oscillations of the polariton density.

Journal ArticleDOI
TL;DR: In this article, the presence of collective excitations, i.e., collective excitation, is thoroughly analyzed in a nonperturbative fashion, showing the consequences of subradiance in the dynamics of such an open, many-body system.
Abstract: One possible route for improving the precision of optical clocks consists of using a set of them conveniently organized in an optical lattice. The presence of interaction, i.e., collective excitations, is thoroughly analyzed in a nonperturbative fashion, showing the consequences of subradiance in the dynamics of such an open, many-body system.

Journal ArticleDOI
TL;DR: Self-testing is a method to infer the underlying physics of a quantum experiment in a black box scenario as mentioned in this paper, which represents the strongest form of certification for quantum systems, and has been used extensively in other areas of quantum information.
Abstract: Self-testing is a method to infer the underlying physics of a quantum experiment in a black box scenario. As such it represents the strongest form of certification for quantum systems. In recent years a considerable self-testing literature has been developed, leading to progress in related device-independent quantum information protocols and deepening our understanding of quantum correlations. In this work we give a thorough and self-contained introduction and review of self-testing and its application to other areas of quantum information.

Journal ArticleDOI
TL;DR: This work shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and fluctuations simultaneously, in contrast to classical slow processes, and develops a quantum geometric framework to find processes with an optimal trade-off between the two quantities.
Abstract: An important result in classical stochastic thermodynamics is the work fluctuation-dissipation relation (FDR), which states that the dissipated work done along a slow process is proportional to the resulting work fluctuations. We show that slowly driven quantum systems violate this FDR whenever quantum coherence is generated along the protocol, and we derive a quantum generalization of the work FDR. The additional quantum terms in the FDR are found to lead to a non-Gaussian work distribution. Fundamentally, our result shows that quantum fluctuations prohibit finding slow protocols that minimize both dissipation and fluctuations simultaneously, in contrast to classical slow processes. Instead, we develop a quantum geometric framework to find processes with an optimal trade-off between the two quantities.

Journal ArticleDOI
TL;DR: This work trains two-dimensional hierarchical TNs to solve image recognition problems, using a training algorithm derived from the multi-scale entanglement renormalization ansatz, and introduces mathematical connections among quantum many-body physics, quantum information theory, and machine learning.
Abstract: The resemblance between the methods used in quantum-many body physics and in machine learning has drawn considerable attention. In particular, tensor networks (TNs) and deep learning architectures bear striking similarities to the extent that TNs can be used for machine learning. Previous results used one-dimensional TNs in image recognition, showing limited scalability and flexibilities. In this work, we train two-dimensional hierarchical TNs to solve image recognition problems, using a training algorithm derived from the multi-scale entanglement renormalization ansatz. This approach introduces mathematical connections among quantum many-body physics, quantum information theory, and machine learning. While keeping the TN unitary in the training phase, TN states are defined, which encode classes of images into quantum many-body states. We study the quantum features of the TN states, including quantum entanglement and fidelity. We find these quantities could be properties that characterize the image classes, as well as the machine learning tasks.