scispace - formally typeset
Search or ask a question
Institution

ICFO – The Institute of Photonic Sciences

FacilityBarcelona, Spain
About: ICFO – The Institute of Photonic Sciences is a facility organization based out in Barcelona, Spain. It is known for research contribution in the topics: Quantum & Quantum entanglement. The organization has 872 authors who have published 1965 publications receiving 56273 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work presents a method to certify the entanglement of all entangled quantum states in a device-independent way by placing the state in a quantum network and constructing a correlation inequality based on anEntanglement witness for the state.
Abstract: We present a method to certify the entanglement of all entangled quantum states in a device-independent way. This is achieved by placing the state in a quantum network and constructing a correlation inequality based on an entanglement witness for the state. Our method is device independent, in the sense that entanglement can be certified from the observed statistics alone, under minimal assumptions on the underlying physics. Conceptually, our results borrow ideas from the field of self-testing to bring the recently introduced measurement-device-independent entanglement witnesses into the fully device-independent regime.

57 citations

Journal Article
01 Mar 2018-Nature
TL;DR: The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field, and an intuitive picture is given for the carrier trajectories in response to the optical-field polarization state.
Abstract: The speed of solid-state electronic devices, determined by the temporal dynamics of charge carriers, could potentially reach unprecedented petahertz frequencies through direct manipulation by optical fields, consisting in a million-fold increase from state-of-the-art technology. In graphene, charge carrier manipulation is facilitated by exceptionally strong coupling to optical fields, from which stems an important back-action of photoexcited carriers. Here we investigate the instantaneous response of graphene to ultrafast optical fields, elucidating the role of hot carriers on sub-100 fs timescales. The measured nonlinear response and its dependence on interaction time and field polarization reveal the back-action of hot carriers over timescales commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.

57 citations

Journal ArticleDOI
TL;DR: A new method to track vesicle dynamics in three dimensions is developed and it is shown that vesicles change their position while actively transporting along microtubules in living cells to overcome obstacles.
Abstract: Vesicle transport is regulated at multiple levels, including regulation by scaffolding proteins and the cytoskeleton. This tight regulation is essential, since slowing or stoppage of transport can cause accumulation of obstacles and has been linked to diseases. Understanding the mechanisms by which transport is regulated as well as how motor proteins overcome obstacles can give important clues as to how these mechanisms break down in disease states. Here, we describe that the cytoskeleton architecture impacts transport in a vesicle-size-dependent manner, leading to pausing of vesicles larger than the separation of the microtubules. We further develop methods capable of following 3D transport processes in living cells. Using these methods, we show that vesicles move using two different modes along the microtubule. Off-axis motion, which leads to repositioning of the vesicle in 3D along the microtubule, correlates with the presence of steric obstacles and may help in circumventing them.

57 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules at room temperature, a process that is inaccessible with noble metals at the nanoscale.
Abstract: Substituting noble metals for high-index dielectrics has recently been proposed as an alternative strategy in nanophotonics to design broadband optical resonators and circumvent the Ohmic losses of plasmonic materials. In this paper, we demonstrate that subwavelength silicon nanoantennas can manipulate the photon emission dynamics of fluorescent molecules. In practice, we show that dielectric nanoantennas can both increase and decrease the local density of optical states at room temperature, a process that is inaccessible with noble metals at the nanoscale. Using scanning probe microscopy, we analyze quantitatively, in three dimensions, the near-field interaction between a 100-nm fluorescent nanosphere and silicon nanoantennas with diameters ranging between 170 and 250 nm. Associated with numerical simulations, these measurements indicate increased or decreased total spontaneous decay rates by up to 15% and a gain in the collection efficiency of emitted photons by up to 85%. Our study demonstrates the potential of silicon-based nanoantennas for the low-loss manipulation of solid-state emitters at the nanoscale and at room temperature.

57 citations

Journal ArticleDOI
22 Mar 2017-Nature
TL;DR: This work uses high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit and Poissonian variance, enabling orders-of-magnitude improvements in sensitivity for state of theart sensing and spectroscopy.
Abstract: Simultaneous precise measurement of the non-commuting observables spin angle and spin amplitude is achieved by directing the error due to quantum measurement back-action into an unmeasured spin component. Many quantum systems that are currently used to enhance metrological precision obey the regular Heisenberg uncertainty relations that apply to conjugate variables such as position and momentum. These systems can be 'squeezed' to reduce the uncertainty of one variable at the expense of greater uncertainty in another, and thereby to surpass the limits set by classical physics in metrology. However, spin systems and pseudo-spin systems obey different uncertainty relations because of their underlying symmetries. On the basis of these relations, the authors demonstrate simultaneous measurement of spin amplitude and spin angle beyond classical limits. This approach has potential applications in spin-based sensors and could increase the sensitivity for several applications, such as magnetic resonance measurements, in which spin relaxation rates could be correlated with precession frequency with higher precision than is currently possible. Measurement of spin precession is central to extreme sensing in physics1,2, geophysics3, chemistry4, nanotechnology5 and neuroscience6, and underlies magnetic resonance spectroscopy7. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action—the random change in a quantum state due to measurement—necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2—the classical limit for N spins—by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state8 that, because spins obey non-Heisenberg uncertainty relations9,10, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements11,12,13 applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance14. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing15,16,17,18 and spectroscopy19,20.

56 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Maciej Lewenstein10493147362
F. Javier García de Abajo7535130221
Antonio Acín7232419984
Frank H. L. Koppens6923932754
Romain Quidant6824818262
Leszek Kaczmarek6730215985
Sefaattin Tongay6525420628
Zhipei Sun6527027030
Lluis Torner6456617978
Georg Heinze6335416391
Yaroslav V. Kartashov5448711174
Francesco Ricci5429515492
Gerasimos Konstantatos5316019627
Niek F. van Hulst5317812400
Turgut Durduran5328910525
Network Information
Related Institutions (5)
SLAC National Accelerator Laboratory
9.2K papers, 559.6K citations

85% related

Istituto Italiano di Tecnologia
14.5K papers, 437.5K citations

83% related

University of Jena
45.1K papers, 1.4M citations

83% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202261
2021269
2020308
2019287
2018285