scispace - formally typeset
Search or ask a question
Institution

ICFO – The Institute of Photonic Sciences

FacilityBarcelona, Spain
About: ICFO – The Institute of Photonic Sciences is a facility organization based out in Barcelona, Spain. It is known for research contribution in the topics: Quantum & Quantum entanglement. The organization has 872 authors who have published 1965 publications receiving 56273 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Gain concentrated along the edge of the insulator can counteract intrinsic losses in such a selective way that the topologically protected edge states become amplified, while bulk modes remain damped.
Abstract: We provide proof-of-principle illustration of lasing in a two-dimensional polariton topological insulator. Topological edge states may arise in a structured polariton microcavity under the combined action of spin-orbit coupling and Zeeman splitting in the magnetic field. Their properties and lifetime are strongly affected by gain. Thus, gain concentrated along the edge of the insulator can counteract intrinsic losses in such a selective way that the topologically protected edge states become amplified, while bulk modes remain damped. When gain is compensated by nonlinear absorption the metastable nonlinear edge states are formed. Taking a triangular structure instead of an infinite edge we observed persistent topological currents accompanied by the time-periodic oscillations of the polariton density.

95 citations

Journal ArticleDOI
TL;DR: In this article, the behavior of topological phases of matter in the presence of strong interactions and correlations is analyzed and implemented in a one-dimensional optical lattice. And the authors propose a potential platform for addressing these challenges.
Abstract: Understanding the behavior of topological phases of matter in the presence of strong interactions and correlations is one of the big challenges in modern physics. New theoretical work analyzes a potential platform for addressing these challenges and proposes how it might be implemented in a one-dimensional optical lattice.

94 citations

Journal ArticleDOI
12 Jun 2020-Science
TL;DR: In this article, the authors used a graphene-based magnetic resonator to realize single, nanometer-scale acoustic graphene plasmon cavities, reaching mode volume confinement factors of 5 × 1010.
Abstract: Acoustic graphene plasmons are highly confined electromagnetic modes carrying large momentum and low loss in the mid-infrared and terahertz spectra. However, until now they have been restricted to micrometer-scale areas, reducing their confinement potential by several orders of magnitude. Using a graphene-based magnetic resonator, we realized single, nanometer-scale acoustic graphene plasmon cavities, reaching mode volume confinement factors of ~5 × 1010 Such a cavity acts as a mid-infrared nanoantenna, which is efficiently excited from the far field and is electrically tunable over an extremely large broadband spectrum. Our approach provides a platform for studying ultrastrong-coupling phenomena, such as chemical manipulation via vibrational strong coupling, as well as a path to efficient detectors and sensors operating in this long-wavelength spectral range.

94 citations

Journal ArticleDOI
27 Sep 2017
TL;DR: In this paper, the authors present the results of the programa Masters d'Excel-lencia of the Fundacio Catalunya-La Pedrera and the ERC Advanced Grant OSYRIS.
Abstract: Programa Masters d'Excel-lencia of the Fundacio Catalunya-La Pedrera; ERC Advanced Grant OSYRIS; EU IP SIQS; EU PRO QUIC; EU STREP EQuaM [323714]; Fundacio Cellex; Spanish MINECO [SEV-2015-0522, FIS2013-46768, FIS2016-79508-P]; Generalitat de Catalunya [SGR 874]

94 citations

Journal ArticleDOI
TL;DR: In infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic-organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short-circuit current density and power conversion efficiency up to 7.9%, which is a current record for SWIR CQD solar cells.
Abstract: Developing low-cost photovoltaic absorbers that can harvest the short-wave infrared (SWIR) part of the solar spectrum, which remains unharnessed by current Si-based and perovskite photovoltaic technologies, is a prerequisite for making high-efficiency, low-cost tandem solar cells. Here, infrared PbS colloidal quantum dot (CQD) solar cells employing a hybrid inorganic-organic ligand exchange process that results in an external quantum efficiency of 80% at 1.35 µm are reported, leading to a short-circuit current density of 34 mA cm-2 and a power conversion efficiency (PCE) up to 7.9%, which is a current record for SWIR CQD solar cells. When this cell is placed at the back of an MAPbI3 perovskite film, it delivers an extra 3.3% PCE by harnessing light beyond 750 nm.

93 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Maciej Lewenstein10493147362
F. Javier García de Abajo7535130221
Antonio Acín7232419984
Frank H. L. Koppens6923932754
Romain Quidant6824818262
Leszek Kaczmarek6730215985
Sefaattin Tongay6525420628
Zhipei Sun6527027030
Lluis Torner6456617978
Georg Heinze6335416391
Yaroslav V. Kartashov5448711174
Francesco Ricci5429515492
Gerasimos Konstantatos5316019627
Niek F. van Hulst5317812400
Turgut Durduran5328910525
Network Information
Related Institutions (5)
SLAC National Accelerator Laboratory
9.2K papers, 559.6K citations

85% related

Istituto Italiano di Tecnologia
14.5K papers, 437.5K citations

83% related

University of Jena
45.1K papers, 1.4M citations

83% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202261
2021269
2020308
2019287
2018285