scispace - formally typeset
Search or ask a question
Institution

ICFO – The Institute of Photonic Sciences

FacilityBarcelona, Spain
About: ICFO – The Institute of Photonic Sciences is a facility organization based out in Barcelona, Spain. It is known for research contribution in the topics: Quantum & Quantum entanglement. The organization has 872 authors who have published 1965 publications receiving 56273 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The optimal cycle that universally maximizes the extracted power of heat engines, the cooling power of refrigerators, and in general any linear combination of the heat currents is derived.
Abstract: We study the optimization of the performance of arbitrary periodically driven thermal machines. Within the assumption of fast modulation of the driving parameters, we derive the optimal cycle that universally maximizes the extracted power of heat engines, the cooling power of refrigerators, and in general any linear combination of the heat currents. We denote this optimal solution as ``generalized Otto cycle'' since it shares the basic structure with the standard Otto cycle, but it is characterized by a greater number of fast strokes. We bound this number in terms of the dimension of the Hilbert space of the system used as working fluid. The generality of these results allows for a widespread range of applications, such as reducing the computational complexity for numerical approaches, or obtaining the explicit form of the optimal protocols when the system-baths interactions are characterized by a single thermalization scale. In this case, we compare the thermodynamic performance of a collection of optimally driven noninteracting and interacting qubits. Remarkably, for refrigerators the noninteracting qubits perform almost as well as the interacting ones, while in the heat engine case there is a many-body advantage both in the maximum power, and in the efficiency at maximum power. Additionally, we illustrate our general results studying the paradigmatic model of a qutrit-based heat engine. Our results strictly hold in the semiclassical case in which no coherence is generated by the driving, and finally we discuss the noncommuting case.

24 citations

Journal ArticleDOI
TL;DR: In this paper, a protocol for accurately measuring weak magnetic fields using a two-level magnetometer, which is coupled to two (hot and cold) thermal baths and operated as a twostroke quantum thermal machine, is introduced.
Abstract: The precise estimation of small parameters is a challenging problem in quantum metrology. Here, we introduce a protocol for accurately measuring weak magnetic fields using a two-level magnetometer, which is coupled to two (hot and cold) thermal baths and operated as a two-stroke quantum thermal machine. Its working substance consists of a two-level system (TLS), generated by an unknown weak magnetic field acting on a qubit, and a second TLS arising due to the application of a known strong and tunable field on another qubit. Depending on this field, the machine may either act as an engine or a refrigerator. Under feasible conditions, determining this transition point allows to reduce the relative error of the measurement of the weak unknown magnetic field by the ratio of the temperatures of the colder bath to the hotter bath.

24 citations

Journal ArticleDOI
TL;DR: It is predicted that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice based on analytical theory for three-level scatterer, which additionally reveals a rich interplay between lattice and atomic resonances.
Abstract: We explore the ability of two-dimensional periodic atom arrays to produce light amplification and generate laser emission when gain is introduced through external optical pumping. Specifically, we predict that lasing can take place for arbitrarily weak atomic scatterers assisted by cooperative interaction among atoms in a 2D lattice. We base this conclusion on analytical theory for three-level scatterers, which additionally reveals a rich interplay between lattice and atomic resonances. Our results provide a general background to understand light amplification and lasing in periodic atomic arrays, with promising applications in the generation, manipulation, and control of coherent photon states at the nanoscale.

24 citations

Journal ArticleDOI
TL;DR: Boada et al. as discussed by the authors constructed the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries.
Abstract: In this paper I construct the naive lattice Dirac Hamiltonian describing the propagation of fermions in a generic 2D optical metric for different lattice and flux-lattice geometries. First, I apply a top-down constructive approach that we first proposed in [Boada et al., New J. Phys. 13, 035002 (2011)] to the honeycomb and to the brickwall lattices. I carefully discuss how gauge transformations that generalize momentum (and Dirac cone) shifts in the Brillouin zone in the Minkowski homogeneous case can be used in order to change the phases of the hopping. In particular, I show that lattice Dirac Hamiltonian for Rindler spacetime in the honeycomb and brickwall lattices can be realized by considering real and isotropic (but properly position dependent) tunneling terms. For completeness, I also discuss a suitable formulation of Rindler Dirac Hamiltonian in semi-synthetic brickwall and π-flux square lattices (where one of the dimension is implemented by using internal spin states of atoms as we originally proposed in [Boada et al., Phys. Rev. Lett. 108, 133001 (2012)] and [Celi et al., Phys. Rev. Lett. 112, 043001 (2014)]).

24 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown.
Abstract: We investigate the non-Markovianity of continuous-variable Gaussian quantum channels through the evolution of an operational metrological quantifier, namely, the Gaussian interferometric power, which captures the minimal precision that can be achieved using bipartite Gaussian probes in a black-box phase estimation setup, where the phase shift generator is a priori unknown. We observe that the monotonicity of the Gaussian interferometric power under the action of local Gaussian quantum channels on the ancillary arm of the bipartite probes is a natural indicator of Markovian dynamics; consequently, its breakdown for specific maps can be used to construct a witness and an effective quantifier of non-Markovianity. In our work, we consider two paradigmatic Gaussian models, the damping master equation and the quantum Brownian motion, and identify analytically and numerically the parameter regimes that give rise to non-Markovian dynamics. We then quantify the degree of non-Markovianity of the channels in terms of Gaussian interferometric power, showing, in particular, that even nonentangled probes can be useful to witness non-Markovianity. This establishes an interesting link between the dynamics of bipartite continuous-variable open systems and their potential for optical interferometry. The results are an important supplement to the recent research on characterization of non-Markovianity in continuous-variable systems.

24 citations


Authors

Showing all 928 results

NameH-indexPapersCitations
Maciej Lewenstein10493147362
F. Javier García de Abajo7535130221
Antonio Acín7232419984
Frank H. L. Koppens6923932754
Romain Quidant6824818262
Leszek Kaczmarek6730215985
Sefaattin Tongay6525420628
Zhipei Sun6527027030
Lluis Torner6456617978
Georg Heinze6335416391
Yaroslav V. Kartashov5448711174
Francesco Ricci5429515492
Gerasimos Konstantatos5316019627
Niek F. van Hulst5317812400
Turgut Durduran5328910525
Network Information
Related Institutions (5)
SLAC National Accelerator Laboratory
9.2K papers, 559.6K citations

85% related

Istituto Italiano di Tecnologia
14.5K papers, 437.5K citations

83% related

University of Jena
45.1K papers, 1.4M citations

83% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

83% related

Max Planck Society
406.2K papers, 19.5M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202261
2021269
2020308
2019287
2018285