scispace - formally typeset
Search or ask a question
Institution

Ikerbasque

OtherBilbao, Spain
About: Ikerbasque is a other organization based out in Bilbao, Spain. It is known for research contribution in the topics: Graphene & Quantum. The organization has 713 authors who have published 7967 publications receiving 231990 citations. The organization is also known as: Basque Foundation for Science.
Topics: Graphene, Quantum, Population, Galaxy, Magnetization


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the thermoelectric properties in one and two-dimensional silicon and germanium structures have been investigated using first-principles density functional techniques and linear response for the thermal and electrical transport.
Abstract: The thermoelectric properties in one- and two-dimensional silicon and germanium structures have been investigated using first-principles density functional techniques and linear response for the thermal and electrical transport. We have considered here the two-dimensional silicene and germanene, together with nanoribbons of different widths. For the nano ribbons, we have also investigated the possibility of nano structuring these systems by mixing silicon and germanium. We found that the figure of merit at room temperature of these systems is remarkably high, up to 2.5.

152 citations

Journal ArticleDOI
25 Oct 2017-ACS Nano
TL;DR: The energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width is reported, and valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV.
Abstract: We report the energy level alignment evolution of valence and conduction bands of armchair-oriented graphene nanoribbons (aGNR) as their band gap shrinks with increasing width. We use 4,4″-dibromo-para-terphenyl as the molecular precursor on Au(111) to form extended poly-para-phenylene nanowires, which can subsequently be fused sideways to form atomically precise aGNRs of varying widths. We measure the frontier bands by means of scanning tunneling spectroscopy, corroborating that the nanoribbon’s band gap is inversely proportional to their width. Interestingly, valence bands are found to show Fermi level pinning as the band gap decreases below a threshold value around 1.7 eV. Such behavior is of critical importance to understand the properties of potential contacts in GNR-based devices. Our measurements further reveal a particularly interesting system for studying Fermi level pinning by modifying an adsorbate’s band gap while maintaining an almost unchanged interface chemistry defined by substrate and ads...

152 citations

Journal ArticleDOI
TL;DR: In this paper, the role of thickness of ETM was investigated in organo-metal halide perovskite solar cells (PSCs) using CH3NH3PbI3 as light harvester and Spiro-OMeTAD as HTM.

152 citations

Journal ArticleDOI
TL;DR: In this article, the thermoelectric properties of hybrid graphene/boron nitride nanoribbons (BCNNRs) were investigated using the nonequilibrium Green's function approach.
Abstract: The thermoelectric properties of hybrid graphene/boron nitride nanoribbons (BCNNRs) are investigated using the nonequilibrium Green’s function approach. We find that the thermoelectric figure of merit (ZT ) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p + 2 is enhanced 10–20 times, while the ZT of nanoribbons with other widths is enhanced by just 1.5–3 times. As for zigzag-edge nanoribbons, the ZT is enhanced 2–3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductance outweighing the decrease in the electrical conductance. In addition, the effect of the component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.

152 citations

Journal ArticleDOI
TL;DR: Interestingly, the reduced speech‐brain synchronization in dyslexic readers compared to normal readers appears preserved through the development from childhood to adulthood, suggesting that the evaluation of speech‐ brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia.
Abstract: Developmental dyslexia is a reading disorder often characterized by reduced awareness of speech units. Whether the neural source of this phonological disorder in dyslexic readers results from the malfunctioning of the primary auditory system or damaged feedback communication between higher-order phonological regions (i.e., left inferior frontal regions) and the auditory cortex is still under dispute. Here we recorded magnetoencephalographic (MEG) signals from 20 dyslexic readers and 20 age-matched controls while they were listening to ∼10-s-long spoken sentences. Compared to controls, dyslexic readers had (1) an impaired neural entrainment to speech in the delta band (0.5-1 Hz); (2) a reduced delta synchronization in both the right auditory cortex and the left inferior frontal gyrus; and (3) an impaired feedforward functional coupling between neural oscillations in the right auditory cortex and the left inferior frontal regions. This shows that during speech listening, individuals with developmental dyslexia present reduced neural synchrony to low-frequency speech oscillations in primary auditory regions that hinders higher-order speech processing steps. The present findings, thus, strengthen proposals assuming that improper low-frequency acoustic entrainment affects speech sampling. This low speech-brain synchronization has the strong potential to cause severe consequences for both phonological and reading skills. Interestingly, the reduced speech-brain synchronization in dyslexic readers compared to normal readers (and its higher-order consequences across the speech processing network) appears preserved through the development from childhood to adulthood. Thus, the evaluation of speech-brain synchronization could possibly serve as a diagnostic tool for early detection of children at risk of dyslexia. Hum Brain Mapp 37:2767-2783, 2016. © 2016 Wiley Periodicals, Inc.

152 citations


Authors

Showing all 775 results

NameH-indexPapersCitations
Luis M. Liz-Marzán13261661684
Maurizio Prato10974163055
Francisco Guinea10857369426
Rafael Yuste10434237415
Tom Broadhurst9642230074
Alexei Verkhratsky8945029788
Maria Forsyth8474933340
J. Garay Garcia8134823275
Ángel Borja7731620302
Wei Zhang76193234966
Mirko Prato7637021189
Nate Bastian7635518342
A. J. Castro-Tirado7272824272
Rainer Hillenbrand7122718259
B. Andrei Bernevig6928029935
Network Information
Related Institutions (5)
École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Max Planck Society
406.2K papers, 19.5M citations

93% related

ETH Zurich
122.4K papers, 5.1M citations

92% related

Weizmann Institute of Science
54.5K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202320
202299
20211,123
20201,135
2019918
2018843