scispace - formally typeset
Search or ask a question

Showing papers by "Ikerbasque published in 2020"


Journal ArticleDOI
28 Jan 2020-ACS Nano
TL;DR: Prominent authors from all over the world joined efforts to summarize the current state-of-the-art in understanding and using SERS, as well as to propose what can be expected in the near future, in terms of research, applications, and technological development.
Abstract: The discovery of the enhancement of Raman scattering by molecules adsorbed on nanostructured metal surfaces is a landmark in the history of spectroscopic and analytical techniques. Significant experimental and theoretical effort has been directed toward understanding the surface-enhanced Raman scattering (SERS) effect and demonstrating its potential in various types of ultrasensitive sensing applications in a wide variety of fields. In the 45 years since its discovery, SERS has blossomed into a rich area of research and technology, but additional efforts are still needed before it can be routinely used analytically and in commercial products. In this Review, prominent authors from around the world joined together to summarize the state of the art in understanding and using SERS and to predict what can be expected in the near future in terms of research, applications, and technological development. This Review is dedicated to SERS pioneer and our coauthor, the late Prof. Richard Van Duyne, whom we lost during the preparation of this article.

1,768 citations


Journal ArticleDOI
TL;DR: This expert Consensus Statement, endorsed by the ENS-CCA, summarizes the latest advances in CCA, including classification, genetics and treatment, and provides recommendations for CCA management and priorities across basic, translational and clinical research.
Abstract: Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted

926 citations


Journal ArticleDOI
TL;DR: Wannier90 as mentioned in this paper is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states, which is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these BLoch states.
Abstract: Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

476 citations


DOI
Claudia Backes1, Claudia Backes2, Amr M. Abdelkader3, Concepción Alonso4, Amandine Andrieux-Ledier5, Raul Arenal6, Raul Arenal7, Jon Azpeitia6, Nilanthy Balakrishnan8, Luca Banszerus9, Julien Barjon5, Ruben Bartali10, Sebastiano Bellani11, Claire Berger12, Claire Berger13, Reinhard Berger14, M.M. Bernal Ortega15, Carlo Bernard16, Peter H. Beton8, André Beyer17, Alberto Bianco18, Peter Bøggild19, Francesco Bonaccorso11, Gabriela Borin Barin20, Cristina Botas, Rebeca A. Bueno6, Daniel Carriazo21, Andres Castellanos-Gomez6, Meganne Christian, Artur Ciesielski18, Tymoteusz Ciuk, Matthew T. Cole, Jonathan N. Coleman1, Camilla Coletti11, Luigi Crema10, Huanyao Cun16, Daniela Dasler22, Domenico De Fazio3, Noel Díez, Simon Drieschner23, Georg S. Duesberg24, Roman Fasel20, Roman Fasel25, Xinliang Feng14, Alberto Fina15, Stiven Forti11, Costas Galiotis26, Costas Galiotis27, Giovanni Garberoglio28, Jorge M. Garcia6, Jose A. Garrido, Marco Gibertini29, Armin Gölzhäuser17, Julio Gómez, Thomas Greber16, Frank Hauke22, Adrian Hemmi16, Irene Hernández-Rodríguez6, Andreas Hirsch22, Stephen A. Hodge3, Yves Huttel6, Peter Uhd Jepsen19, I. Jimenez6, Ute Kaiser30, Tommi Kaplas31, HoKwon Kim29, Andras Kis29, Konstantinos Papagelis26, Konstantinos Papagelis32, Kostas Kostarelos33, Aleksandra Krajewska34, Kangho Lee24, Changfeng Li35, Harri Lipsanen35, Andrea Liscio, Martin R. Lohe14, Annick Loiseau5, Lucia Lombardi3, María Francisca López6, Oliver Martin22, Cristina Martín36, Lidia Martínez6, José A. Martín-Gago6, José I. Martínez6, Nicola Marzari29, Alvaro Mayoral7, Alvaro Mayoral37, John B. McManus1, Manuela Melucci, Javier Méndez6, Cesar Merino, Pablo Merino6, Andreas Meyer22, Elisa Miniussi16, Vaidotas Miseikis11, Neeraj Mishra11, Vittorio Morandi, Carmen Munuera6, Roberto Muñoz6, Hugo Nolan1, Luca Ortolani, A. K. Ott38, A. K. Ott3, Irene Palacio6, Vincenzo Palermo39, John Parthenios26, Iwona Pasternak40, Amalia Patanè8, Maurizio Prato21, Maurizio Prato41, Henri Prevost5, Vladimir Prudkovskiy13, Nicola M. Pugno42, Nicola M. Pugno43, Nicola M. Pugno44, Teófilo Rojo45, Antonio Rossi11, Pascal Ruffieux20, Paolo Samorì18, Léonard Schué5, Eki J. Setijadi10, Thomas Seyller46, Giorgio Speranza10, Christoph Stampfer9, I. Stenger5, Wlodek Strupinski40, Yuri Svirko31, Simone Taioli47, Simone Taioli28, Kenneth B. K. Teo, Matteo Testi10, Flavia Tomarchio3, Mauro Tortello15, Emanuele Treossi, Andrey Turchanin48, Ester Vázquez36, Elvira Villaro, Patrick Rebsdorf Whelan19, Zhenyuan Xia39, Rositza Yakimova, Sheng Yang14, G. Reza Yazdi, Chanyoung Yim24, Duhee Yoon3, Xianghui Zhang17, Xiaodong Zhuang14, Luigi Colombo49, Andrea C. Ferrari3, Mar García-Hernández6 
Trinity College, Dublin1, Heidelberg University2, University of Cambridge3, Autonomous University of Madrid4, Université Paris-Saclay5, Spanish National Research Council6, University of Zaragoza7, University of Nottingham8, RWTH Aachen University9, Kessler Foundation10, Istituto Italiano di Tecnologia11, Georgia Institute of Technology12, University of Grenoble13, Dresden University of Technology14, Polytechnic University of Turin15, University of Zurich16, Bielefeld University17, University of Strasbourg18, Technical University of Denmark19, Swiss Federal Laboratories for Materials Science and Technology20, Ikerbasque21, University of Erlangen-Nuremberg22, Technische Universität München23, Bundeswehr University Munich24, University of Bern25, Foundation for Research & Technology – Hellas26, University of Patras27, Center for Theoretical Studies, University of Miami28, École Polytechnique Fédérale de Lausanne29, University of Ulm30, University of Eastern Finland31, Aristotle University of Thessaloniki32, University of Manchester33, Polish Academy of Sciences34, Aalto University35, University of Castilla–La Mancha36, ShanghaiTech University37, University of Exeter38, Chalmers University of Technology39, Warsaw University of Technology40, University of Trieste41, Queen Mary University of London42, University of Trento43, Instituto Politécnico Nacional44, University of the Basque Country45, Chemnitz University of Technology46, Charles University in Prague47, University of Jena48, University of Texas at Dallas49
29 Jan 2020
TL;DR: In this article, the authors present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures, adopting a 'hands-on' approach, providing practical details and procedures as derived from literature and from the authors' experience, in order to enable the reader to reproduce the results.
Abstract: © 2020 The Author(s). We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resourceconsuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown.

330 citations


Journal ArticleDOI
TL;DR: The new coronvirus, classified as SARS-CoV-2 that emerged in Hubei province in China, causes a new coronavirus disease, which was termed COVID-19 by WHO on February 11, 2020.
Abstract: The new coronavirus, classified as SARS-CoV-2 that emerged in Hubei province in China, causes a new coronavirus disease, which was termed COVID-19 by WHO on February 11, 2020. COVID-19 claimed almost 19000 lives around the world by March 25, 2020.

270 citations


Journal ArticleDOI
TL;DR: In this article, tensor network methods are applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice-gauge theories.
Abstract: Lattice gauge theories, which originated from particle physics in the context of Quantum Chromodynamics (QCD), provide an important intellectual stimulus to further develop quantum information technologies. While one long-term goal is the reliable quantum simulation of currently intractable aspects of QCD itself, lattice gauge theories also play an important role in condensed matter physics and in quantum information science. In this way, lattice gauge theories provide both motivation and a framework for interdisciplinary research towards the development of special purpose digital and analog quantum simulators, and ultimately of scalable universal quantum computers. In this manuscript, recent results and new tools from a quantum science approach to study lattice gauge theories are reviewed. Two new complementary approaches are discussed: first, tensor network methods are presented – a classical simulation approach – applied to the study of lattice gauge theories together with some results on Abelian and non-Abelian lattice gauge theories. Then, recent proposals for the implementation of lattice gauge theory quantum simulators in different quantum hardware are reported, e.g., trapped ions, Rydberg atoms, and superconducting circuits. Finally, the first proof-of-principle trapped ions experimental quantum simulations of the Schwinger model are reviewed.

265 citations


Journal ArticleDOI
28 Oct 2020-Nature
TL;DR: A high-throughput search for magnetic topological materials based on first-principles calculations is performed and several materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magneticSemimetals.
Abstract: The discoveries of intrinsically magnetic topological materials, including semimetals with a large anomalous Hall effect and axion insulators1–3, have directed fundamental research in solid-state materials. Topological quantum chemistry4 has enabled the understanding of and the search for paramagnetic topological materials5,6. Using magnetic topological indices obtained from magnetic topological quantum chemistry (MTQC)7, here we perform a high-throughput search for magnetic topological materials based on first-principles calculations. We use as our starting point the Magnetic Materials Database on the Bilbao Crystallographic Server, which contains more than 549 magnetic compounds with magnetic structures deduced from neutron-scattering experiments, and identify 130 enforced semimetals (for which the band crossings are implied by symmetry eigenvalues), and topological insulators. For each compound, we perform complete electronic structure calculations, which include complete topological phase diagrams using different values of the Hubbard potential. Using a custom code to find the magnetic co-representations of all bands in all magnetic space groups, we generate data to be fed into the algorithm of MTQC to determine the topology of each magnetic material. Several of these materials display previously unknown topological phases, including symmetry-indicated magnetic semimetals, three-dimensional anomalous Hall insulators and higher-order magnetic semimetals. We analyse topological trends in the materials under varying interactions: 60 per cent of the 130 topological materials have topologies sensitive to interactions, and the others have stable topologies under varying interactions. We provide a materials database for future experimental studies and open-source code for diagnosing topologies of magnetic materials. High-throughput calculations are performed to predict approximately 130 magnetic topological materials, with complete electronic structure calculations and topological phase diagrams.

261 citations


Journal ArticleDOI
G. Caria1, Phillip Urquijo1, Iki Adachi2, Iki Adachi3  +228 moreInstitutions (77)
TL;DR: This work constitutes the most precise measurements of R(D) and R (D^{*}) performed to date as well as the first result for R( D) based on a semileptonic tagging method.
Abstract: The experimental results on the ratios of branching fractions $\mathcal{R}(D) = {\cal B}(\bar{B} \to D \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D \ell^- \bar{ u}_{\ell})$ and $\mathcal{R}(D^*) = {\cal B}(\bar{B} \to D^* \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D^* \ell^- \bar{ u}_{\ell})$, where $\ell$ denotes an electron or a muon, show a long-standing discrepancy with the Standard Model predictions, and might hint to a violation of lepton flavor universality. We report a new simultaneous measurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$, based on a data sample containing $772 \times 10^6$ $B\bar{B}$ events recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. In this analysis the tag-side $B$ meson is reconstructed in a semileptonic decay mode and the signal-side $\tau$ is reconstructed in a purely leptonic decay. The measured values are $\mathcal{R}(D)= 0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within $0.2$, $1.1$ and $0.8$ standard deviations for $\mathcal{R}(D)$, $\mathcal{R}(D^*)$ and their combination, respectively. This work constitutes the most precise measurements of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ performed to date as well as the first result for $\mathcal{R}(D)$ based on a semileptonic tagging method.

228 citations


Journal ArticleDOI
TL;DR: In this article, the pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore-dynamic modulation, and interface construction.
Abstract: The pores in metal–organic frameworks (MOFs) can be functionalized by placing chemical entities along the backbone and within the backbone. This chemistry is enabled by the architectural, thermal, and chemical robustness of the frameworks and the ability to characterize them by many diffraction and spectroscopic techniques. The pore chemistry of MOFs is articulated in terms of site isolation, coupling, and cooperation and relate that to their functions in guest recognition, catalysis, ion and electron transport, energy transfer, pore-dynamic modulation, and interface construction. It is envisioned that the ultimate control of pore chemistry requires arranging functionalities into defined sequences and developing techniques for reading and writing such sequences within the pores.

205 citations


Journal ArticleDOI
TL;DR: An updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution, and the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions.
Abstract: . Several sets of reference regions have been proposed in the literature for the regional synthesis of observed and model-projected climate change information. A popular example is the set of reference regions introduced in the IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Adaptation (SREX) based on a prior coarser selection and then slightly modified for the 5th Assessment Report of the IPCC. This set was developed for reporting sub-continental observed and projected changes over a reduced number (33) of climatologically consistent regions encompassing a representative number of grid boxes (the typical resolution of the 5th Climate Model Intercomparison Projection, CMIP5, climate models was around 2o). These regions have been used as the basis for several popular spatially aggregated datasets, such as the seasonal mean temperature and precipitation in IPCC regions for CMIP5. Here we present an updated version of the reference regions for the analysis of new observed and simulated datasets (including CMIP6) which offer an opportunity for refinement due to the higher model resolution (around 1o for CMIP6). As a result, the number of regions increased to 43 land plus 12 open ocean, better representing consistent regional climate features. The paper describes the rationale followed for the definition of the new regions and analyses their homogeneity. The regions are defined as polygons and are provided as coordinates and shapefile together with companion R and Python notebooks to illustrate their use in practical problems (trimming data, etc.). We also describe the generation of a new dataset with monthly temperature and precipitation spatially aggregated in the new regions, currently for CMIP5 (for backwards consistency) and CMIP6, to be extended to other datasets in the future (including observations). The use of these reference regions, dataset and code is illustrated through a worked example using scatter diagrams to offer guidance on the likely range of future climate change at the scale of reference regions. The regions, datasets and code (R and Python notebooks) are freely available at the ATLAS GitHub repository; https://github.com/SantanderMetGroup/ATLAS , doi: 10.5281/zenodo.3688072 (Iturbide et al., 2020).

192 citations


Journal ArticleDOI
TL;DR: It is shown that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro and speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.
Abstract: During adult hippocampal neurogenesis, most newborn cells undergo apoptosis and are rapidly phagocytosed by resident microglia to prevent the spillover of intracellular contents. Here, we propose that phagocytosis is not merely passive corpse removal but has an active role in maintaining neurogenesis. First, we found that neurogenesis was disrupted in male and female mice chronically deficient for two phagocytosis pathways: the purinergic receptor P2Y12, and the tyrosine kinases of the TAM family Mer tyrosine kinase (MerTK)/Axl. In contrast, neurogenesis was transiently increased in mice in which MerTK expression was conditionally downregulated. Next, we performed a transcriptomic analysis of the changes induced by phagocytosis in microglia in vitro and identified genes involved in metabolism, chromatin remodeling, and neurogenesis-related functions. Finally, we discovered that the secretome of phagocytic microglia limits the production of new neurons both in vivo and in vitro Our data suggest that microglia act as a sensor of local cell death, modulating the balance between proliferation and survival in the neurogenic niche through the phagocytosis secretome, thereby supporting the long-term maintenance of adult hippocampal neurogenesis.SIGNIFICANCE STATEMENT Microglia are the brain professional phagocytes and, in the adult hippocampal neurogenic niche, they remove newborn cells naturally undergoing apoptosis. Here we show that phagocytosis of apoptotic cells triggers a coordinated transcriptional program that alters their secretome, limiting neurogenesis both in vivo and in vitro In addition, chronic phagocytosis disruption in mice deficient for receptors P2Y12 and MerTK/Axl reduces adult hippocampal neurogenesis. In contrast, inducible MerTK downregulation transiently increases neurogenesis, suggesting that microglial phagocytosis provides a negative feedback loop that is necessary for the long-term maintenance of adult hippocampal neurogenesis. Therefore, we speculate that the effects of promoting engulfment/degradation of cell debris may go beyond merely removing corpses to actively promoting regeneration in development, aging, and neurodegenerative diseases.

Journal ArticleDOI
TL;DR: A deep neural network is proposed that simultaneously extracts the spatial features of traffic, using graph convolution, and its temporal features by means of Long Short Term Memory (LSTM) cells to make both short-term and long-term predictions.
Abstract: Traffic forecasting is an important research area in Intelligent Transportation Systems that is focused on anticipating traffic in order to mitigate congestion. In this work we propose a deep neural network that simultaneously extracts the spatial features of traffic, using graph convolution, and its temporal features by means of Long Short Term Memory (LSTM) cells to make both short-term and long-term predictions. The model is trained and tested using sparse trajectory (GPS) data coming from the ride-hailing service of DiDi in the cities of Xi'an and Chengdu in China. Besides, presenting the deep neural network, we also propose a data-reduction technique based on temporal correlation to select the most relevant road links to be used as input. Combining the suggested approaches, our model obtains better results compared to high-performance algorithms for traffic forecasting, such as LSTM or the algorithms presented in the TRANSFOR19 forecasting competition. The model is capable of maintaining its performance over different time-horizons from 5 min to up to 4 h with multi-step predictions.

Journal ArticleDOI
25 Aug 2020-Cells
TL;DR: The results emphasize that separation methods such as ultracentrifugation and density gradients are still the most commonly used methods, the use of size exclusion chromatography has increased, and techniques based on tangential flow and microfluidics are now being used by more than 10% of respondents.
Abstract: Research on extracellular vesicles (EVs) is growing exponentially due to an increasing appreciation of EVs as disease biomarkers and therapeutics, an expanding number of EV-containing materials under study, and application of new preparation, detection, and cargo analysis methods. Diversity of both sources and methodologies imposes challenges on the comparison of measurement results between studies and laboratories. While reference guidelines and minimal requirements for EV research have achieved the important objective of assembling community consensus, it is also essential to understand which methodologies and quality controls are currently being applied, and how usage trends are evolving. As an initial response to this need, the International Society for Extracellular Vesicles (ISEV) performed a worldwide survey in 2015 on “Techniques used for the isolation and characterization of extracellular vesicles” and published the results from this survey in 2016. In 2019, a new survey was performed to assess the changing state of the field. The questionnaire received more than 600 full or partial responses, and the present manuscript summarizes the results of this second worldwide survey. The results emphasize that separation methods such as ultracentrifugation and density gradients are still the most commonly used methods, the use of size exclusion chromatography has increased, and techniques based on tangential flow and microfluidics are now being used by more than 10% of respondents. The survey also reveals that most EV researchers still do not perform sample quality controls before or after isolation of EVs. Finally, the majority of EV researchers emphasize that separation and characterization of EVs should receive more attention.

Journal ArticleDOI
09 Apr 2020-Nature
TL;DR: Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.
Abstract: Atmospheric carbon dioxide enrichment (eCO2) can enhance plant carbon uptake and growth1–5, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO2 concentration6. Although evidence gathered from young aggrading forests has generally indicated a strong CO2 fertilization effect on biomass growth3–5, it is unclear whether mature forests respond to eCO2 in a similar way. In mature trees and forest stands7–10, photosynthetic uptake has been found to increase under eCO2 without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO2 unclear4,5,7–11. Here using data from the first ecosystem-scale Free-Air CO2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responded to four years of eCO2 exposure. We show that, although the eCO2 treatment of +150 parts per million (+38 per cent) above ambient levels induced a 12 per cent (+247 grams of carbon per square metre per year) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone accounting for half of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO2, and challenge the efficacy of climate mitigation strategies that rely on ubiquitous CO2 fertilization as a driver of increased carbon sinks in global forests. Carbon dioxide enrichment of a mature forest resulted in the emission of the excess carbon back into the atmosphere via enhanced ecosystem respiration, suggesting that mature forests may be limited in their capacity to mitigate climate change.

Journal ArticleDOI
TL;DR: It is predicted that major research advances in morphology control of metal-organic frameworks and porous carbons will facilitate the use of these materials in addressing major needs of the society, especially the grand challenges of energy, health, and environment.
Abstract: Owing to their large ratio of surface area to mass and volume, metal–organic frameworks and porous carbons have revolutionized many applications that rely on chemical and physical interactions at surfaces. However, a major challenge today is to shape these porous materials to translate their enhanced performance from the laboratory into macroscopic real-world applications. In this review, we give a comprehensive overview of how the precise morphology control of metal oxides can be transferred to metal–organic frameworks and porous carbon materials. As such, tailored material structures can be designed in 0D, 1D, 2D, and 3D with considerable implications for applications such as in energy storage, catalysis and nanomedicine. Therefore, we predict that major research advances in morphology control of metal–organic frameworks and porous carbons will facilitate the use of these materials in addressing major needs of the society, especially the grand challenges of energy, health, and environment.

Journal ArticleDOI
TL;DR: In this paper, a review summarizes some potential natural materials and modification strategies for the construction of anode electrodes to decrease the cost and enhance the performance of microbial fuel cells (MFCs).

Journal ArticleDOI
26 Jun 2020-Science
TL;DR: Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants.
Abstract: Surfactant-assisted seeded growth of metal nanoparticles (NPs) can be engineered to produce anisotropic gold nanocrystals with high chiroptical activity through the templating effect of chiral micelles formed in the presence of dissymmetric cosurfactants Mixed micelles adsorb on gold nanorods, forming quasihelical patterns that direct seeded growth into NPs with pronounced morphological and optical handedness Sharp chiral wrinkles lead to chiral plasmon modes with high dissymmetry factors (~020) Through variation of the dimensions of chiral wrinkles, the chiroptical properties can be tuned within the visible and near-infrared electromagnetic spectrum The micelle-directed mechanism allows extension to other systems, such as the seeded growth of chiral platinum shells on gold nanorods This approach provides a reproducible, simple, and scalable method toward the fabrication of NPs with high chiral optical activity

Journal ArticleDOI
TL;DR: A single cobalt atom electrocatalyst is synthesized for lithium-oxygen batteries by a polymer encapsulation strategy, revealing that the synergy between a single atom and the support endows the catalyst with excellent stability and durability.
Abstract: Lithium-oxygen batteries with ultrahigh energy density have received considerable attention as of the future energy storage technologies. The development of effective electrocatalysts and a corresponding working mechanism during cycling are critically important for lithium-oxygen batteries. Here, a single cobalt atom electrocatalyst is synthesized for lithium-oxygen batteries by a polymer encapsulation strategy. The isolated moieties of single atom catalysts can effectively regulate the distribution of active sites to form micrometre-sized flower-like lithium peroxide and promote the decomposition of lithium peroxide by a one-electron pathway. The battery with single cobalt atoms can operate with high round-trip efficiency (86.2%) and long-term stability (218 days), which is superior to a commercial 5 wt% platinum/carbon catalyst. We reveal that the synergy between a single atom and the support endows the catalyst with excellent stability and durability. The promising results provide insights into the design of highly efficient catalysts for lithium-oxygen batteries and greatly expand the scope of future investigation. Li–O2 batteries represent one of the promising paths toward high energy density battery systems. Here the authors synthesize single atom Co electrocatalysts to regulate the formation and decomposition of the major discharge product Li2O2, realizing high round-trip efficiency and stability in a Li–O2 cell.

Journal ArticleDOI
TL;DR: In this article, the authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of the Strategic Funding UID/FIS/04650/2019 and projects PTDC/BTMMAT/28237/2017.
Abstract: The authors thank the FCT (Fundacao para a Ciencia e Tecnologia) for financial support under the framework of the Strategic Funding UID/FIS/04650/2019 and projects PTDC/BTMMAT/28237/2017, PTDC/EMD-EMD/28159/2017 and PTDC/FIS-MAC/28157/2017. Funds provided by FCT in the framework of EuroNanoMed 2016 call, Project LungChek ENMed/0049/2016 are also gratefully acknowledged. D.M.C, L.C.F and C.M.C also thanks to the FCT for the grants SFRH/BPD/121526/2016, SFRH/BD/145345/2019 and SFRH/BPD/112547/2015, respectively. PMM thanks to the ENMed_CQ_CF_04_2018 grant. Finally, the authors acknowledge funding by the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-3-R (AEI/FEDER, UE) and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively.

Journal ArticleDOI
TL;DR: This work completes the 100-year-old problem of crystalline group theory by deriving the small core presentations, momentum stars, compatibility relations, and magnetic elementary band corepresentations of the 1,421 magnetic space groups (MSGs), which are made freely accessible through tools on the Bilbao Crystallographic Server.
Abstract: Over the last 100 years, the group-theoretic characterization of crystalline solids has provided the foundational language for diverse problems in physics and chemistry. There exist two classes of crystalline solids: nonmagnetic crystals left invariant by space groups (SGs), and solids with commensurate magnetic order that respect the symmetries of magnetic space groups (MSGs). Whereas many of the properties of the SGs, such as their momentum-space corepresentations (coreps) and elementary band coreps (EBRs) were tabulated with relative ease, progress on deriving the analogous properties of the MSGs has largely stalled for the past 70 years due to the complicated symmetries of magnetic crystals. In this work, we complete the 100-year-old problem of crystalline group theory by deriving the small coreps, momentum stars, compatibility relations, and magnetic EBRs (MEBRs) of the single (spinless) and double (spinful) MSGs. We have implemented freely-accessible tools on the Bilbao Crystallographic Server for accessing the coreps of the MSGs, whose wide-ranging applications include neutron diffraction investigations of magnetic structure, the interplay of lattice regularization and (symmetry-enhanced) fermion doubling, and magnetic topological phases, such as axion insulators and spin liquids. Using the MEBRs, we extend the earlier theory of Topological Quantum Chemistry to the MSGs to form a complete, real-space theory of band topology in magnetic and nonmagnetic crystalline solids - Magnetic Topological Quantum Chemistry (MTQC). We then use MTQC to derive the complete set of symmetry-based indicators (SIs) of band topology in all spinful (fermionic) crystals, for which we identify symmetry-respecting bulk and anomalous surface and hinge states. Lastly, using the SIs, we discover several novel non-axionic magnetic higher-order topological insulators.

Journal ArticleDOI
TL;DR: In this article, the main advances in waste tyre valorization by catalytic pyrolysis are analyzed, and a wide range of catalysts have been proposed in the literature, with zeolites being the most commonly used.
Abstract: The environmental concern associated with waste tyre disposal and the necessity of sustainable waste management policies has promoted the development of waste tyre valorization processes in the last decades. Within this framework, this review analyzes the main advances in waste tyre valorization by catalytic pyrolysis. Waste tyre pyrolysis allows converting this solid waste into three product fractions of potential interest, as are gases, pyrolysis oil (TPO) and char, with their yield and features being conditioned by pyrolysis conditions. Catalytic pyrolysis is an interesting alternative to improve the quality of the products and the selectivity of the process. A wide range of catalysts have been proposed in the literature for waste tyre valorization, with zeolites being the most commonly used due to their capacity for the production of valuable chemicals, such as BTX and light olefins. This review approaches multidisciplinary aspects for the evaluation of the critical points in this process, such as those related to pyrolysis technologies, reaction mechanisms, catalyst design and products properties.

Journal ArticleDOI
03 Aug 2020
TL;DR: In this paper, a tight-binding band structure calculation was performed in the St. Petersburg State University Computing Center (http://spin.lab.spbu.ru) with the support of the Russian Science Foundation.
Abstract: This work is supported by Saint Petersburg State University project for scientific investigations (ID No. 51126254, https://spin.lab.spbu.ru) and Russian Science Foundation (Grant no. 18-12-00062 in part of the photoemission measurements and 18-12-00169 in part of calculations of topological invariants, investigation of dependence of the electronic spectra on SOC strength, and tight-binding band structure calculations). Russian Foundation for Basic Research (Grant nos. 20-32-70179 and 18-52-06009) and Science Development Foundation under the President of the Republic of Azerbaijan (Grant no. EIF-BGM-4-RFTF-1/2017-21/04/1-M-02) are acknowledged. We also acknowledge the support by the Basque Departamento de Educacion, UPV/EHU (Grant no. IT-756-13), Spanish Ministerio de Ciencia e Innovacion (Grant no. PID2019-103910GB-I00), the Fundamental Research Program of the State Academies of Sciences (line of research III.23.2.9) and Tomsk State University competitiveness improvement program (project no. 8.1.01.2018). I.P.R. acknowledge support from Ministry of Education and Science of the Russian Federation (State Task No. 0721-2020-0033) (tight-binding calculations). The calculations were performed in Donostia International Physics Center and in the Research park of St. Petersburg State University Computing Center (http://cc.spbu.ru).

Journal ArticleDOI
TL;DR: This review provides a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and the most promising strategies to prevent tumor escape to CAR- T cell therapy.
Abstract: Chimeric antigen receptor (CAR) T cell therapies have demonstrated remarkable efficacy for the treatment of hematological malignancies. However, in patients with solid tumors, objective responses to CAR-T cell therapy remain sporadic and transient. A major obstacle for CAR-T cells is the intrinsic ability of tumors to evade immune responses. Advanced solid tumors are largely composed of desmoplastic stroma and immunosuppressive modulators, and characterized by aberrant cell proliferation and vascularization, resulting in hypoxia and altered nutrient availability. To mount a curative response after infusion, CAR-T cells must infiltrate the tumor, recognize their cognate antigen and perform their effector function in this hostile tumor microenvironment, to then differentiate and persist as memory T cells that confer long-term protection. Fortunately, recent advances in synthetic biology provide a wide set of tools to genetically modify CAR-T cells to overcome some of these obstacles. In this review, we provide a comprehensive overview of the key tumor intrinsic mechanisms that prevent an effective CAR-T cell antitumor response and we discuss the most promising strategies to prevent tumor escape to CAR-T cell therapy.

Journal ArticleDOI
TL;DR: This Review highlights a selection of the most successful organo-fluorine drugs, that have achieved blockbuster status, namely, sitagliptin (diabetes), sofosbuvir (hepatitis C), emtricitabine (HIV), glecaprevir/pibrentasvir ( hepatitisC), elvitegravir (Hiv), dolutegravirs (H HIV), bictegravIR (H IV),


Journal ArticleDOI
TL;DR: Eleven new fluorine-containing FDA-approved drugs have been profiled and details of their discovery and preparation are discussed, including four examples of aromatic fluorine, three aromatic CF3 group, three aliphatic CF3 and one compound with aromaticCF3O group.

Journal ArticleDOI
TL;DR: The spectral range of long-lived and confined phonon polaritons in a polar van der Waals crystal is shown to be tunable by intercalation of Na atoms, expanding their potential for nanophotonic applications in the mid-infrared domain.
Abstract: Phonon polaritons—light coupled to lattice vibrations—in polar van der Waals crystals are promising candidates for controlling the flow of energy on the nanoscale due to their strong field confinement, anisotropic propagation and ultra-long lifetime in the picosecond range1–5. However, the lack of tunability of their narrow and material-specific spectral range—the Reststrahlen band—severely limits their technological implementation. Here, we demonstrate that intercalation of Na atoms in the van der Waals semiconductor α-V2O5 enables a broad spectral shift of Reststrahlen bands, and that the phonon polaritons excited show ultra-low losses (lifetime of 4 ± 1 ps), similar to phonon polaritons in a non-intercalated crystal (lifetime of 6 ± 1 ps). We expect our intercalation method to be applicable to other van der Waals crystals, opening the door for the use of phonon polaritons in broad spectral bands in the mid-infrared domain. The spectral range of long-lived and confined phonon polaritons in a polar van der Waals crystal is shown to be tunable by intercalation of Na atoms, expanding their potential for nanophotonic applications in the mid-infrared domain.

Journal ArticleDOI
TL;DR: The goal of this Review article is to highlight the current state-of-the-art in this area by profiling 42 selected compounds that combine fluorine and amino acid structural elements, including examples of drug-candidates that although withdrawn from development had a significant impact on the progress of medicinal chemistry and/or provided a deeper understanding of the nature and mechanism of biological action.

Journal ArticleDOI
TL;DR: This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.
Abstract: The extracellular matrix (ECM) is a complex network with multiple functions, including specific functions during tissue regeneration. Precisely, the properties of the ECM have been thoroughly used in tissue engineering and regenerative medicine research, aiming to restore the function of damaged or dysfunctional tissues. Tissue decellularization is gaining momentum as a technique to obtain potentially implantable decellularized extracellular matrix (dECM) with well-preserved key components. Interestingly, the tissue-specific dECM is becoming a feasible option to carry out regenerative medicine research, with multiple advantages compared to other approaches. This review provides an overview of the most common methods used to obtain the dECM and summarizes the strategies adopted to decellularize specific tissues, aiming to provide a helpful guide for future research development.

Journal ArticleDOI
TL;DR: A new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nano-imaging, (bio)-sensing, quantum applications and heat management is demonstrated.
Abstract: Recent discoveries have shown that, when two layers of van der Waals (vdW) materials are superimposed with a relative twist angle between them, the electronic properties of the coupled system can be dramatically altered. Here, we demonstrate that a similar concept can be extended to the optics realm, particularly to propagating phonon polaritons-hybrid light-matter interactions. To do this, we fabricate stacks composed of two twisted slabs of a vdW crystal (α-MoO3) supporting anisotropic phonon polaritons (PhPs), and image the propagation of the latter when launched by localized sources. Our images reveal that, under a critical angle, the PhPs isofrequency curve undergoes a topological transition, in which the propagation of PhPs is strongly guided (canalization regime) along predetermined directions without geometric spreading. These results demonstrate a new degree of freedom (twist angle) for controlling the propagation of polaritons at the nanoscale with potential for nanoimaging, (bio)-sensing, or heat management.