scispace - formally typeset
Search or ask a question
Institution

Karlsruhe Institute of Technology

EducationKarlsruhe, Germany
About: Karlsruhe Institute of Technology is a education organization based out in Karlsruhe, Germany. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 37946 authors who have published 82138 publications receiving 2197068 citations. The organization is also known as: KIT & University of Karlsruhe.


Papers
More filters
Journal ArticleDOI
A. Aab1, P. Abreu2, Marco Aglietta3, I. Al Samarai4  +415 moreInstitutions (65)
22 Sep 2017-Science
TL;DR: The Pierre Auger Collaboration reports the observation of thousands of cosmic rays with ultrahigh energies of several exa–electron volts, arriving in a slightly dipolar distribution, showing that they originate outside the Milky Way Galaxy.
Abstract: Cosmic rays are atomic nuclei arriving from outer space that reach the highest energies observed in nature Clues to their origin come from studying the distribution of their arrival directions Using 3 × 10 4 cosmic rays with energies above 8 × 10 18 electron volts, recorded with the Pierre Auger Observatory from a total exposure of 76,800 km 2 sr year, we determined the existence of anisotropy in arrival directions The anisotropy, detected at more than a 52σ level of significance, can be described by a dipole with an amplitude of 65 − 09 + 13 percent toward right ascension α d = 100 ± 10 degrees and declination δ d = − 24 − 13 + 12 degrees That direction indicates an extragalactic origin for these ultrahigh-energy particles

369 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of various modified iron and cobalt catalysts was investigated for CO2 hydrogenation and it was shown that alumina was the best catalyst for CO 2 hydrogenation.
Abstract: Hydrogenation of CO, CO2 and their mixtures has been comparatively studied with a Co–MnO–Aerosil–Pt and a Fe–Al2O3–Cu–K catalyst at the University of Karlsruhe. With iron catalysts as promising for CO2 hydrogenation, their composition was varied: (1) several supports (SiO2, TiO2, Al2O3), (2) alkali promotion (Li, Na, K, Rb), (3) usage of Zeolite Y as catalyst component. The catalysts were characterised by adsorption methods, XRD, TPR and temperature programmed decarburisation after a H2/CO2 treatment (Korea Research Institute of Chemical Technology). Iron and cobalt catalysts behaved differently in CO2 hydrogenation. With the alkalised iron catalyst the same hydrocarbon product composition was obtained from a H2/CO2 and from a H2/CO synthesis gas in spite of the CO partial pressure remaining low, specifically due to water gas shift equilibrium constraints. With the cobalt catalyst at increasing CO2 and respectively decreasing CO content of the syngas, the product composition shifted from a Fischer–Tropsch type (mainly higher hydrocarbons) to almost exclusively methane. These basically different catalyst behaviours are explained by different modes of formation of the kinetic regime of FT synthesis—selective inhibition of methane formation and the selective inhibition of product desorption as a prerequisite for chain growth—in the case of iron through irreversible carbiding and alkali surface coverage and in case of cobalt through strong reversible CO adsorption. Investigation of the various modified iron catalysts showed alumina to be the best support for CO2 hydrogenation and potassium to act as a powerful promotor. With the Fe–Y–zeolite–alkali catalysts, a decrease of methane selectivity was observed in the order Li < Na < K < Rb being applied as promotors.

368 citations

Journal ArticleDOI
01 Jan 1986-Carbon
TL;DR: In this paper, an indirect laboratory method, which is based on TMA and DSC measurements during the stabilization period, is presented to explain the properties of carbon fibres made from PAN.

367 citations

Journal ArticleDOI
TL;DR: It is shown that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.
Abstract: The wave nature of matter is a key ingredient of quantum physics and yet it defies our classical intuition. First proposed by Louis de Broglie a century ago, it has since been confirmed with a variety of particles from electrons up to molecules. Here we demonstrate new high-contrast quantum experiments with large and massive tailor-made organic molecules in a near-field interferometer. our experiments prove the quantum wave nature and delocalization of compounds composed of up to 430 atoms, with a maximal size of up to 60 A, masses up to m = 6,910 AMU and de Broglie wavelengths down to λdB = h/mv1 pm. We show that even complex systems, with more than 1,000 internal degrees of freedom, can be prepared in quantum states that are sufficiently well isolated from their environment to avoid decoherence and to show almost perfect coherence.

367 citations


Authors

Showing all 38468 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Yury Gogotsi171956144520
Marc Weber1672716153502
Chad A. Mirkin1641078134254
J. S. Lange1602083145919
Hannes Jung1592069125069
Wolfgang Wagner1562342123391
Vivek Sharma1503030136228
Teresa Lenz1501718114725
Andreas Pfeiffer1491756131080
Daniel Bloch1451819119556
Th. Müller1441798125843
Martin Erdmann1441562100470
Tim Adye1431898109010
Daniela Bortoletto1431883108433
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

Technische Universität München
123.4K papers, 4M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023412
2022828
20214,635
20204,874
20194,830
20184,412