scispace - formally typeset
Search or ask a question
Institution

Karlsruhe Institute of Technology

EducationKarlsruhe, Germany
About: Karlsruhe Institute of Technology is a education organization based out in Karlsruhe, Germany. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 37946 authors who have published 82138 publications receiving 2197068 citations. The organization is also known as: KIT & University of Karlsruhe.


Papers
More filters
Journal ArticleDOI
TL;DR: This method discriminates the specimen-related scattered background from signal fluorescence, thereby removing out-of-focus light and optimizing the contrast of in-focus structures, and provides rapid control of the illumination pattern, exceptional imaging quality and high imaging speeds.
Abstract: The combination of digital scanned laser light sheet microscopy and incoherent structured illumination allows intrinsic removal of scattered background fluorescence from the desired fluorescent signal. This provides substantial advantages for imaging nontransparent organisms and allowed reconstruction of a fly digital embryo from a developing Drosophila embryo.

529 citations

Book ChapterDOI
01 Nov 2016
TL;DR: In this article, the authors survey recent trends in practical algorithms for balanced graph partitioning, point to applications, and discuss future research directions, and present a survey of the most popular algorithms.
Abstract: We survey recent trends in practical algorithms for balanced graph partitioning, point to applications and discuss future research directions.

529 citations

Journal ArticleDOI
TL;DR: This paper proposes a tentative list of information that could be included in published descriptions of tissue electrophysiology models, and used to support interpretation and evaluation of simulation results, to discuss challenges and open questions.
Abstract: Models of cardiac tissue electrophysiology are an important component of the Cardiac Physiome Project, which is an international effort to build biophysically based multi-scale mathematical models of the heart. Models of tissue electrophysiology can provide a bridge between electrophysiological cell models at smaller scales, and tissue mechanics, metabolism and blood flow at larger scales. This paper is a critical review of cardiac tissue electrophysiology models, focussing on the micro-structure of cardiac tissue, generic behaviours of action potential propagation, different models of cardiac tissue electrophysiology, the choice of parameter values and tissue geometry, emergent properties in tissue models, numerical techniques and computational issues. We propose a tentative list of information that could be included in published descriptions of tissue electrophysiology models, and used to support interpretation and evaluation of simulation results. We conclude with a discussion of challenges and open questions.

529 citations

Journal ArticleDOI
TL;DR: It is shown that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles, indicating that disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.
Abstract: Mitochondria are crucial organelles in the production of energy and in the control of signalling cascades. A machinery of pro-fusion and fission proteins regulates their morphology and subcellular localization. In muscle this results in an orderly pattern of intermyofibrillar and subsarcolemmal mitochondria. Muscular atrophy is a genetically controlled process involving the activation of the autophagy-lysosome and the ubiquitin–proteasome systems. Whether and how the mitochondria are involved in muscular atrophy is unknown. Here, we show that the mitochondria are removed through autophagy system and that changes in mitochondrial network occur in atrophying muscles. Expression of the fission machinery is per se sufficient to cause muscle wasting in adult animals, by triggering organelle dysfunction and AMPK activation. Conversely, inhibition of the mitochondrial fission inhibits muscle loss during fasting and after FoxO3 overexpression. Mitochondrial-dependent muscle atrophy requires AMPK activation as inhibition of AMPK restores muscle size in myofibres with altered mitochondria. Thus, disruption of the mitochondrial network is an essential amplificatory loop of the muscular atrophy programme.

528 citations


Authors

Showing all 38468 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Yury Gogotsi171956144520
Marc Weber1672716153502
Chad A. Mirkin1641078134254
J. S. Lange1602083145919
Hannes Jung1592069125069
Wolfgang Wagner1562342123391
Vivek Sharma1503030136228
Teresa Lenz1501718114725
Andreas Pfeiffer1491756131080
Daniel Bloch1451819119556
Th. Müller1441798125843
Martin Erdmann1441562100470
Tim Adye1431898109010
Daniela Bortoletto1431883108433
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

Technische Universität München
123.4K papers, 4M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023412
2022828
20214,635
20204,874
20194,830
20184,412