scispace - formally typeset
Search or ask a question
Institution

Karlsruhe Institute of Technology

EducationKarlsruhe, Germany
About: Karlsruhe Institute of Technology is a education organization based out in Karlsruhe, Germany. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 37946 authors who have published 82138 publications receiving 2197068 citations. The organization is also known as: KIT & University of Karlsruhe.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a diagrammatic calculation of the leading two-loop QCD corrections to the masses of the neutral CP-even Higgs bosons in the Minimal Supersymmetric Standard Model is presented.
Abstract: We present detailed results of a diagrammatic calculation of the leading two-loop QCD corrections to the masses of the neutral CP-even Higgs bosons in the Minimal Supersymmetric Standard Model (MSSM). The two-loop corrections are incorporated into the full diagrammatic one-loop result and supplemented with refinement terms that take into account leading electroweak two-loop and higher-order QCD contributions. The dependence of the results for the Higgs-boson masses on the various MSSM parameters is analyzed in detail, with a particular focus on the part of the parameter space accessible at LEP2 and the upgraded Tevatron. For the mass of the lightest Higgs boson, mh, a parameter scan has been performed, yielding an upper limit on mh which depends only on tan�. The results for the Higgs-boson masses are compared with results obtained by renormalization group methods. Good agreement is found in the case of vanishing mixing in the scalar quark sector, while sizable deviations occur if squark mixing is taken into account.

936 citations

Proceedings ArticleDOI
05 Jun 2011
TL;DR: In this article, a sparse feature matcher and visual odometry algorithm are combined with a multi-view linking scheme for generating consistent 3D point clouds for online 3D reconstruction.
Abstract: Accurate 3d perception from video sequences is a core subject in computer vision and robotics, since it forms the basis of subsequent scene analysis. In practice however, online requirements often severely limit the utilizable camera resolution and hence also reconstruction accuracy. Furthermore, real-time systems often rely on heavy parallelism which can prevent applications in mobile devices or driver assistance systems, especially in cases where FPGAs cannot be employed. This paper proposes a novel approach to build 3d maps from high-resolution stereo sequences in real-time. Inspired by recent progress in stereo matching, we propose a sparse feature matcher in conjunction with an efficient and robust visual odometry algorithm. Our reconstruction pipeline combines both techniques with efficient stereo matching and a multi-view linking scheme for generating consistent 3d point clouds. In our experiments we show that the proposed odometry method achieves state-of-the-art accuracy. Including feature matching, the visual odometry part of our algorithm runs at 25 frames per second, while - at the same time - we obtain new depth maps at 3-4 fps, sufficient for online 3d reconstructions.

930 citations

Journal ArticleDOI
TL;DR: An overview on the available candidates in the quest for the least coordinating anion and a summary of new applications, available starting materials, and general strategies to introduce a WCA into a system are presented.
Abstract: A review on the available candidates in the quest for the least coordinating anion and a summary of new applications, available starting materials, and general strategies to introduce a WCA into a system. Some of the unusual properties of WCA salts such as high soly. in low dielec. media, pseudo gas-phase conditions in condensed phases, and the stabilization of weakly bound and low-charged complexes are rationalized on thermodn. grounds. Limits of the WCAs, i.e., anion coordination and decompn., are shown and a quantum chem. anal. of all types of WCAs is presented which allows the choice of a particular WCA to be based on quant. data from a wide range of different anions. [on SciFinder (R)]

929 citations

Journal ArticleDOI
TL;DR: In this paper, the authors upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE), to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use.
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

927 citations

Journal ArticleDOI
08 Jun 2017-Nature
TL;DR: This work exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver, and demonstrates the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications.
Abstract: Solitons are waveforms that preserve their shape while propagating, as a result of a balance of dispersion and nonlinearity. Soliton-based data transmission schemes were investigated in the 1980s and showed promise as a way of overcoming the limitations imposed by dispersion of optical fibres. However, these approaches were later abandoned in favour of wavelength-division multiplexing schemes, which are easier to implement and offer improved scalability to higher data rates. Here we show that solitons could make a comeback in optical communications, not as a competitor but as a key element of massively parallel wavelength-division multiplexing. Instead of encoding data on the soliton pulse train itself, we use continuous-wave tones of the associated frequency comb as carriers for communication. Dissipative Kerr solitons (DKSs) (solitons that rely on a double balance of parametric gain and cavity loss, as well as dispersion and nonlinearity) are generated as continuously circulating pulses in an integrated silicon nitride microresonator via four-photon interactions mediated by the Kerr nonlinearity, leading to low-noise, spectrally smooth, broadband optical frequency combs. We use two interleaved DKS frequency combs to transmit a data stream of more than 50 terabits per second on 179 individual optical carriers that span the entire telecommunication C and L bands (centred around infrared telecommunication wavelengths of 1.55 micrometres). We also demonstrate coherent detection of a wavelength-division multiplexing data stream by using a pair of DKS frequency combs-one as a multi-wavelength light source at the transmitter and the other as the corresponding local oscillator at the receiver. This approach exploits the scalability of microresonator-based DKS frequency comb sources for massively parallel optical communications at both the transmitter and the receiver. Our results demonstrate the potential of these sources to replace the arrays of continuous-wave lasers that are currently used in high-speed communications. In combination with advanced spatial multiplexing schemes and highly integrated silicon photonic circuits, DKS frequency combs could bring chip-scale petabit-per-second transceivers into reach.

922 citations


Authors

Showing all 38468 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Yury Gogotsi171956144520
Marc Weber1672716153502
Chad A. Mirkin1641078134254
J. S. Lange1602083145919
Hannes Jung1592069125069
Wolfgang Wagner1562342123391
Vivek Sharma1503030136228
Teresa Lenz1501718114725
Andreas Pfeiffer1491756131080
Daniel Bloch1451819119556
Th. Müller1441798125843
Martin Erdmann1441562100470
Tim Adye1431898109010
Daniela Bortoletto1431883108433
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

Technische Universität München
123.4K papers, 4M citations

93% related

Delft University of Technology
94.4K papers, 2.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023412
2022828
20214,635
20204,874
20194,830
20184,412