scispace - formally typeset
Search or ask a question
Institution

National Institutes of Health

GovernmentBethesda, Maryland, United States
About: National Institutes of Health is a government organization based out in Bethesda, Maryland, United States. It is known for research contribution in the topics: Population & Gene. The organization has 149298 authors who have published 297896 publications receiving 21337431 citations. The organization is also known as: NIH & U.S. National Institutes of Health.
Topics: Population, Gene, Cancer, Receptor, Immune system


Papers
More filters
Journal ArticleDOI
01 Oct 1998-Nature
TL;DR: It is shown that in a German family with Parkinson's disease a missense mutation in the ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene causes a partial loss of the catalytic activity of this thiol protease, which could lead to aberrations in the proteolytic pathway and aggregation of proteins.
Abstract: Mutations of the α-synuclein gene1,2 have been identified in some familial forms of Parkinson's disease, and α-synuclein protein has been shown to accumulate in the brains of patients with the disease3. These findings suggest that Parkinson's disease may be caused by the abnormal aggregation of α-synuclein protein. Here we have identified in a German family with Parkinson's disease a missense mutation in the ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) gene. We show that this mutation, Ile93Met, causes a partial loss of the catalytic activity of this thiol protease, which could lead to aberrations in the proteolytic pathway and aggregation of proteins.

1,605 citations

Journal ArticleDOI
TL;DR: The new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems are described, including addition of new lipid types, including phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol.
Abstract: CHARMM-GUI Membrane Builder, http://www.charmm-gui.org/input/membrane, is a web-based user interface designed to interactively build all-atom protein/membrane or membrane-only systems for molecular dynamics simulations through an automated optimized process. In this work, we describe the new features and major improvements in Membrane Builder that allow users to robustly build realistic biological membrane systems, including (1) addition of new lipid types, such as phosphoinositides, cardiolipin (CL), sphingolipids, bacterial lipids, and ergosterol, yielding more than 180 lipid types, (2) enhanced building procedure for lipid packing around protein, (3) reliable algorithm to detect lipid tail penetration to ring structures and protein surface, (4) distance-based algorithm for faster initial ion displacement, (5) CHARMM inputs for P21 image transformation, and (6) NAMD equilibration and production inputs. The robustness of these new features is illustrated by building and simulating a membrane model of the polar and septal regions of E. coli membrane, which contains five lipid types: CL lipids with two types of acyl chains and phosphatidylethanolamine lipids with three types of acyl chains. It is our hope that CHARMM-GUI Membrane Builder becomes a useful tool for simulation studies to better understand the structure and dynamics of proteins and lipids in realistic biological membrane environments. © 2014 Wiley Periodicals, Inc.

1,604 citations

Journal ArticleDOI
01 Apr 1999-Neuron
TL;DR: The increased activity in visual cortex in the absence of visual stimulation may reflect a top-down bias of neural signals in favor of the attended location, which derives from a fronto-parietal network.

1,603 citations

Journal ArticleDOI
01 May 2000-Medicine
TL;DR: A registry of United States residents with chronic granulomatous disease (CGD) was established in 1993 in order to estimate the minimum incidence of this uncommon primary immunodeficiency disease and characterize its epidemiologic and clinical features.

1,602 citations

Journal ArticleDOI
14 Jan 2005-Science
TL;DR: Using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue β-amyloid peptide of Alzheimer's disease (Aβ1–40), it is shown that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations infibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrs grow from preformed seeds.
Abstract: Amyloid fibrils commonly exhibit multiple distinct morphologies in electron microscope and atomic force microscope images, often within a single image field. By using electron microscopy and solid-state nuclear magnetic resonance measurements on fibrils formed by the 40-residue beta-amyloid peptide of Alzheimer's disease (Abeta(1-40)), we show that different fibril morphologies have different underlying molecular structures, that the predominant structure can be controlled by subtle variations in fibril growth conditions, and that both morphology and molecular structure are self-propagating when fibrils grow from preformed seeds. Different Abeta(1-40) fibril morphologies also have significantly different toxicities in neuronal cell cultures. These results have implications for the mechanism of amyloid formation, the phenomenon of strains in prion diseases, the role of amyloid fibrils in amyloid diseases, and the development of amyloid-based nano-materials.

1,601 citations


Authors

Showing all 149386 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Eric S. Lander301826525976
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
Frank B. Hu2501675253464
Paul M. Ridker2331242245097
Solomon H. Snyder2321222200444
Salim Yusuf2311439252912
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
John Q. Trojanowski2261467213948
Steven A. Rosenberg2181204199262
Yi Chen2174342293080
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Emory University
122.4K papers, 6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022298
202112,291
202012,261
201911,464
201810,991