scispace - formally typeset
Search or ask a question
Institution

National Institutes of Health

GovernmentBethesda, Maryland, United States
About: National Institutes of Health is a government organization based out in Bethesda, Maryland, United States. It is known for research contribution in the topics: Population & Gene. The organization has 149298 authors who have published 297896 publications receiving 21337431 citations. The organization is also known as: NIH & U.S. National Institutes of Health.
Topics: Population, Gene, Cancer, Receptor, Immune system


Papers
More filters
Journal ArticleDOI
13 Nov 2002-JAMA
TL;DR: Results support the effectiveness and durability of the cognitive training interventions in improving targeted cognitive abilities and were of a magnitude equivalent to the amount of decline expected in elderly persons without dementia over 7- to 14-year intervals.
Abstract: ContextCognitive function in older adults is related to independent living and need for care. However, few studies have addressed whether improving cognitive functions might have short- or long-term effects on activities related to living independently.ObjectiveTo evaluate whether 3 cognitive training interventions improve mental abilities and daily functioning in older, independent-living adults.DesignRandomized, controlled, single-blind trial with recruitment conducted from March 1998 to October 1999 and 2-year follow-up through December 2001.Setting and ParticipantsVolunteer sample of 2832 persons aged 65 to 94 years recruited from senior housing, community centers, and hospital/clinics in 6 metropolitan areas in the United States.InterventionsParticipants were randomly assigned to 1 of 4 groups: 10-session group training for memory (verbal episodic memory; n = 711), or reasoning (ability to solve problems that follow a serial pattern; n = 705), or speed of processing (visual search and identification; n = 712); or a no-contact control group (n = 704). For the 3 treatment groups, 4-session booster training was offered to a 60% random sample 11 months later.Main Outcome MeasuresCognitive function and cognitively demanding everyday functioning.ResultsThirty participants were incorrectly randomized and were excluded from the analysis. Each intervention improved the targeted cognitive ability compared with baseline, durable to 2 years (P<.001 for all). Eighty-seven percent of speed-, 74% of reasoning-, and 26% of memory-trained participants demonstrated reliable cognitive improvement immediately after the intervention period. Booster training enhanced training gains in speed (P<.001) and reasoning (P<.001) interventions (speed booster, 92%; no booster, 68%; reasoning booster, 72%; no booster, 49%), which were maintained at 2-year follow-up (P<.001 for both). No training effects on everyday functioning were detected at 2 years.ConclusionsResults support the effectiveness and durability of the cognitive training interventions in improving targeted cognitive abilities. Training effects were of a magnitude equivalent to the amount of decline expected in elderly persons without dementia over 7- to 14-year intervals. Because of minimal functional decline across all groups, longer follow-up is likely required to observe training effects on everyday function.

1,878 citations

Journal ArticleDOI
Benjamin F. Voight1, Benjamin F. Voight2, Benjamin F. Voight3, Gina M. Peloso4, Gina M. Peloso5, Marju Orho-Melander6, Ruth Frikke-Schmidt7, Maja Barbalić8, Majken K. Jensen3, George Hindy6, Hilma Holm9, Eric L. Ding3, Toby Johnson10, Heribert Schunkert11, Nilesh J. Samani12, Nilesh J. Samani13, Robert Clarke14, Jemma C. Hopewell14, John F. Thompson12, Mingyao Li1, Gudmar Thorleifsson9, Christopher Newton-Cheh, Kiran Musunuru2, Kiran Musunuru3, James P. Pirruccello2, James P. Pirruccello3, Danish Saleheen15, Li Chen16, Alexandre F.R. Stewart16, Arne Schillert11, Unnur Thorsteinsdottir9, Unnur Thorsteinsdottir17, Gudmundur Thorgeirsson17, Sonia S. Anand18, James C. Engert19, Thomas M. Morgan20, John A. Spertus21, Monika Stoll22, Klaus Berger22, Nicola Martinelli23, Domenico Girelli23, Pascal P. McKeown24, Christopher Patterson24, Stephen E. Epstein25, Joseph M. Devaney25, Mary Susan Burnett25, Vincent Mooser26, Samuli Ripatti27, Ida Surakka27, Markku S. Nieminen27, Juha Sinisalo27, Marja-Liisa Lokki27, Markus Perola4, Aki S. Havulinna4, Ulf de Faire28, Bruna Gigante28, Erik Ingelsson28, Tanja Zeller29, Philipp S. Wild29, Paul I.W. de Bakker, Olaf H. Klungel30, Anke-Hilse Maitland-van der Zee30, Bas J M Peters30, Anthonius de Boer30, Diederick E. Grobbee30, Pieter Willem Kamphuisen31, Vera H.M. Deneer, Clara C. Elbers30, N. Charlotte Onland-Moret30, Marten H. Hofker31, Cisca Wijmenga31, W. M. Monique Verschuren, Jolanda M. A. Boer, Yvonne T. van der Schouw30, Asif Rasheed, Philippe M. Frossard, Serkalem Demissie5, Serkalem Demissie4, Cristen J. Willer32, Ron Do3, Jose M. Ordovas33, Jose M. Ordovas34, Gonçalo R. Abecasis32, Michael Boehnke32, Karen L. Mohlke35, Mark J. Daly2, Mark J. Daly3, Candace Guiducci2, Noël P. Burtt2, Aarti Surti2, Elena Gonzalez2, Shaun Purcell2, Shaun Purcell3, Stacey Gabriel2, Jaume Marrugat, John F. Peden14, Jeanette Erdmann11, Patrick Diemert11, Christina Willenborg11, Inke R. König11, Marcus Fischer36, Christian Hengstenberg36, Andreas Ziegler11, Ian Buysschaert37, Diether Lambrechts37, Frans Van de Werf37, Keith A.A. Fox38, Nour Eddine El Mokhtari39, Diana Rubin, Jürgen Schrezenmeir, Stefan Schreiber39, Arne Schäfer39, John Danesh15, Stefan Blankenberg29, Robert Roberts16, Ruth McPherson16, Hugh Watkins14, Alistair S. Hall40, Kim Overvad41, Eric B. Rimm3, Eric Boerwinkle8, Anne Tybjærg-Hansen7, L. Adrienne Cupples5, L. Adrienne Cupples4, Muredach P. Reilly1, Olle Melander6, Pier Mannuccio Mannucci42, Diego Ardissino, David S. Siscovick43, Roberto Elosua, Kari Stefansson9, Kari Stefansson17, Christopher J. O'Donnell3, Christopher J. O'Donnell4, Veikko Salomaa4, Daniel J. Rader1, Leena Peltonen27, Leena Peltonen44, Stephen M. Schwartz43, David Altshuler, Sekar Kathiresan 
11 Aug 2012
TL;DR: In this paper, a Mendelian randomisation analysis was performed to compare the effect of HDL cholesterol, LDL cholesterol, and genetic score on risk of myocardial infarction.
Abstract: Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies (20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of 14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs exclusively associated with LDL cholesterol. – ¹³) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with noncarriers. This diff erence in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio [OR] 0·87, 95% CI 0·84–0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial infarction (OR 0·99, 95% CI 0·88–1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58–0·66). However, a 1 SD increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93, 95% CI 0·68–1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in LDL cholesterol associated with OR 1·54, 95% CI 1·45–1·63) was concordant with that from genetic score (OR 2·13, 95% CI 1·69–2·69, p=2×10

1,878 citations

Journal ArticleDOI
TL;DR: In white adults, overweight and obesity (and possibly underweight) are associated with increased all-cause mortality and the hazard ratios for the men were similar.
Abstract: BACKGROUND A high body-mass index (BMI, the weight in kilograms divided by the square of the height in meters) is associated with increased mortality from cardiovascular disease and certain cancers, but the precise relationship between BMI and all-cause mortality remains uncertain. METHODS We used Cox regression to estimate hazard ratios and 95% confidence intervals for an association between BMI and all-cause mortality, adjusting for age, study, physical activity, alcohol consumption, education, and marital status in pooled data from 19 prospective studies encompassing 1.46 million white adults, 19 to 84 years of age (median, 58). RESULTS The median baseline BMI was 26.2. During a median follow-up period of 10 years (range, 5 to 28), 160,087 deaths were identified. Among healthy participants who never smoked, there was a J-shaped relationship between BMI and all-cause mortality. With a BMI of 22.5 to 24.9 as the reference category, hazard ratios among women were 1.47 (95 percent confidence interval [CI], 1.33 to 1.62) for a BMI of 15.0 to 18.4; 1.14 (95% CI, 1.07 to 1.22) for a BMI of 18.5 to 19.9; 1.00 (95% CI, 0.96 to 1.04) for a BMI of 20.0 to 22.4; 1.13 (95% CI, 1.09 to 1.17) for a BMI of 25.0 to 29.9; 1.44 (95% CI, 1.38 to 1.50) for a BMI of 30.0 to 34.9; 1.88 (95% CI, 1.77 to 2.00) for a BMI of 35.0 to 39.9; and 2.51 (95% CI, 2.30 to 2.73) for a BMI of 40.0 to 49.9. In general, the hazard ratios for the men were similar. Hazard ratios for a BMI below 20.0 were attenuated with longer-term follow-up. CONCLUSIONS In white adults, overweight and obesity (and possibly underweight) are associated with increased all-cause mortality. All-cause mortality is generally lowest with a BMI of 20.0 to 24.9.

1,874 citations

Journal ArticleDOI
TL;DR: The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.
Abstract: The transforming growth factor beta (TGF-beta) family of proteins are a set of pleiotropic secreted signaling molecules with unique and potent immunoregulatory properties. TGF-beta 1 is produced by every leukocyte lineage, including lymphocytes, macrophages, and dendritic cells, and its expression serves in both autocrine and paracrine modes to control the differentiation, proliferation, and state of activation of these immune cells. TGF-beta can modulate expression of adhesion molecules, provide a chemotactic gradient for leukocytes and other cells participating in an inflammatory response, and inhibit them once they have become activated. Increased production and activation of latent TGF-beta have been linked to immune defects associated with malignancy and autoimmune disorders, to susceptibility to opportunistic infection, and to the fibrotic complications associated with chronic inflammatory conditions. In addition to these roles in disease pathogenesis, TGF-beta is now established as a principal mediator of oral tolerance and can be recognized as the sine qua non of a unique subset of effector cells that are induced in this process. The accumulated knowledge gained through extensive in vitro functional analyses and from in vivo animal models, including newly established TGF-beta gene knockout and transgenic mice, supports the concept that clinical therapies based on modulation of this cytokine represent an important new approach to the treatment of disorders of immune function.

1,872 citations

Journal ArticleDOI
Andrew R. Wood1, Tõnu Esko2, Jian Yang3, Sailaja Vedantam4  +441 moreInstitutions (132)
TL;DR: This article identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height, and all common variants together captured 60% of heritability.
Abstract: Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated ∼2,000, ∼3,700 and ∼9,500 SNPs explained ∼21%, ∼24% and ∼29% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/β-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.

1,872 citations


Authors

Showing all 149386 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Eric S. Lander301826525976
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
Frank B. Hu2501675253464
Paul M. Ridker2331242245097
Solomon H. Snyder2321222200444
Salim Yusuf2311439252912
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
John Q. Trojanowski2261467213948
Steven A. Rosenberg2181204199262
Yi Chen2174342293080
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Emory University
122.4K papers, 6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022298
202112,291
202012,261
201911,464
201810,991