scispace - formally typeset
Search or ask a question
Institution

National Institutes of Health

GovernmentBethesda, Maryland, United States
About: National Institutes of Health is a government organization based out in Bethesda, Maryland, United States. It is known for research contribution in the topics: Population & Gene. The organization has 149298 authors who have published 297896 publications receiving 21337431 citations. The organization is also known as: NIH & U.S. National Institutes of Health.
Topics: Population, Gene, Cancer, Receptor, Immune system


Papers
More filters
Journal ArticleDOI
Jeffrey D. Stanaway1, Ashkan Afshin1, Emmanuela Gakidou1, Stephen S Lim1  +1050 moreInstitutions (346)
TL;DR: This study estimated levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs) by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017 and explored the relationship between development and risk exposure.

2,910 citations

Journal ArticleDOI
TL;DR: This commentary summarizes the Workshop presentations on HNPCC and MSI testing; presents the issues relating to the performance, specificity, and specificity of the Bethesda Guidelines; outlines the revised Bethesda Guidelines for identifying individuals at risk for H NPCC; and recommend criteria for MSI testing.
Abstract: Hereditary nonpolyposis colorectal cancer (HNPCC), also known as Lynch syndrome, is a common autosomal dominant syndrome characterized by early age at onset, neoplastic lesions, and microsatellite instability (MSI). Because cancers with MSI account for approximately 15% of all colorectal cancers and because of the need for a better understanding of the clinical and histologic manifestations of HNPCC, the National Cancer Institute hosted an international workshop on HNPCC in 1996, which led to the development of the Bethesda Guidelines for the identification of individuals with HNPCC who should be tested for MSI. To consider revision and improvement of the Bethesda Guidelines, another HNPCC workshop was held at the National Cancer Institute in Bethesda, MD, in 2002. In this commentary, we summarize the Workshop presentations on HNPCC and MSI testing; present the issues relating to the performance, sensitivity, and specificity of the Bethesda Guidelines; outline the revised Bethesda Guidelines for identifying individuals at risk for HNPCC; and recommend criteria for MSI testing.

2,899 citations

Journal ArticleDOI
20 Feb 2009-Cell
TL;DR: Recent advances in understanding of the molecular structures and biochemical functions of the translation initiation machinery are described and key strategies that mediate general or gene-specific translational control are summarized, particularly in mammalian systems.

2,899 citations

Journal ArticleDOI
TL;DR: Atopic asthma is associated with activation in the bronchi of the interleukin-3, 4, and 5 and GM-CSF gene cluster, a pattern compatible with predominant activation of the TH2-like T-cell population.
Abstract: Background. In atopic asthma, activated T helper lymphocytes are present in bronchial-biopsy specimens and bronchoalveolar-lavage (BAL) fluid, and their production of cytokines may be important in the pathogenesis of this disorder. Different patterns of cytokine release are characteristic of certain subgroups of T helper cells, termed TH1 and TH2, the former mediating delayed-type hypersensitivity and the latter mediating IgE synthesis and eosinophilia. The pattern of cytokine production in atopic asthma is unknown. Methods. We assessed cells obtained by BAL in subjects with mild atopic asthma and in normal control subjects for the expression of messenger RNA (mRNA) for interleukin-2, 3, 4, and 5, granulocytemacrophage colony-stimulating factor (GM-CSF), and interferon gamma by in situ hybridization with 32P-labeled complementary RNA. Localization of mRNA to BAL T cells was assessed by simultaneous in situ hybridization and immunofluorescence and by in situ hybridization after immunomagnetic enrichment or...

2,898 citations

Journal ArticleDOI
TL;DR: The mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, and all of the known ROS-producing sites and their relevance to the mitochondrial ROS production in vivo are discussed.
Abstract: Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.

2,893 citations


Authors

Showing all 149386 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Eric S. Lander301826525976
Robert Langer2812324326306
Meir J. Stampfer2771414283776
JoAnn E. Manson2701819258509
Albert Hofman2672530321405
Frank B. Hu2501675253464
Paul M. Ridker2331242245097
Solomon H. Snyder2321222200444
Salim Yusuf2311439252912
Eugene Braunwald2301711264576
Ralph B. D'Agostino2261287229636
John Q. Trojanowski2261467213948
Steven A. Rosenberg2181204199262
Yi Chen2174342293080
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

98% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

97% related

Emory University
122.4K papers, 6M citations

96% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022298
202112,291
202012,261
201911,464
201810,991