scispace - formally typeset
Search or ask a question
Institution

Trinity College, Dublin

EducationDublin, Dublin, Ireland
About: Trinity College, Dublin is a education organization based out in Dublin, Dublin, Ireland. It is known for research contribution in the topics: Population & Context (language use). The organization has 20576 authors who have published 48296 publications receiving 1780313 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper compares estimates of the left-right positions of political parties derived from an expert survey recently completed by the authors with those derived by the Comparative Manifestos Project (CMP) from the content analysis of party manifestos.

313 citations

Journal ArticleDOI
TL;DR: It was concluded that the fibrillar nature of SasG explains its ability to mask binding of S. aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to their ligands and to promote formation of biofilm.
Abstract: Staphylococcus aureus colonizes the moist squamous epithelium of the anterior nares. One of the adhesins likely to be responsible is the S. aureus surface protein G (SasG), which has sequence similarity with the proteins Pls (plasmin sensitive) of S. aureus and Aap (accumulation associated protein) of Staphylococcus epidermidis. Expression of SasG by a laboratory strain of S. aureus could not be detected by Western immunoblotting. To enable investigation of SasG, the gene was cloned into two expression vectors, the IPTG-inducible pMUTIN4 and the tetracycline-inducible pALC2073, and introduced into S. aureus. Expression of SasG masked the ability of exponentially grown S. aureus cells expressing protein A (Spa), clumping factor B (ClfB) and the fibronectin binding proteins A and B (FnBPA and FnBPB) to bind to IgG, cytokeratin 10 and fibronectin, respectively. SasG also masked binding to fibrinogen mediated by both ClfB and the FnBPs. Western immunoblotting showed no reduction in expression of the blocked adhesins following induction of SasG. SasG size variants with eight, six or five B repeats masked binding to the ligands, whereas variants with four, two or one repeats had no effect. SasG-expressing strains formed peritrichous fibrils (53.47±2.51 nm long) of varying density on the cell wall, which were labelled by immunogold negative staining with anti-SasG antibodies. SasG-expressing strains of S. aureus also formed biofilm independently of the polysaccharide intercellular adhesin (PIA). SasG variants with eight, six and five repeats formed biofilm, whereas variants with four, two or one repeats did not. It was concluded that the fibrillar nature of SasG explains its ability to mask binding of S. aureus microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) to their ligands and to promote formation of biofilm. In addition, the strong adhesion of SasG to desquamated nasal epithelial cells likely compensates for its blocking of the binding of S. aureus ClfB to cytokeratin 10, which is important in adhesion to squames by cells lacking SasG. Several clinical isolates expressed SasG at levels similar to those of SH1000 sasG : : pMUTIN4, indicating that the properties described in the laboratory strain SH1000 may be relevant in vivo.

313 citations

Journal ArticleDOI
TL;DR: In this article, the role of natural resources in determining corruption is explored in the context of oil discovery announcements in Sao Tome and Principe (1997-1999) and Cape Verde (1999-2005).

312 citations

Journal ArticleDOI
TL;DR: This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications and demonstrates that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments.
Abstract: Cartilage is a dense connective tissue with limited self-repair capabilities. Mesenchymal stem cell (MSC) laden hydrogels are commonly used for fibrocartilage and articular cartilage tissue engineering, however they typically lack the mechanical integrity for implantation into high load bearing environments. This has led to increased interested in 3D bioprinting of cell laden hydrogel bioinks reinforced with stiffer polymer fibres. The objective of this study was to compare a range of commonly used hydrogel bioinks (agarose, alginate, GelMA and BioINK™) for their printing properties and capacity to support the development of either hyaline cartilage or fibrocartilage in vitro. Each hydrogel was seeded with MSCs, cultured for 28 days in the presence of TGF-β3 and then analysed for markers indicative of differentiation towards either a fibrocartilaginous or hyaline cartilage-like phenotype. Alginate and agarose hydrogels best supported the development of hyaline-like cartilage, as evident by the development of a tissue staining predominantly for type II collagen. In contrast, GelMA and BioINK™ (a PEGMA based hydrogel) supported the development of a more fibrocartilage-like tissue, as evident by the development of a tissue containing both type I and type II collagen. GelMA demonstrated superior printability, generating structures with greater fidelity, followed by the alginate and agarose bioinks. High levels of MSC viability were observed in all bioinks post-printing (∼80%). Finally we demonstrate that it is possible to engineer mechanically reinforced hydrogels with high cell viability by co-depositing a hydrogel bioink with polycaprolactone filaments, generating composites with bulk compressive moduli comparable to articular cartilage. This study demonstrates the importance of the choice of bioink when bioprinting different cartilaginous tissues for musculoskeletal applications.

312 citations

Journal ArticleDOI
TL;DR: The rate of FALS among prospective population based registries is 5.1% (CI 4.1 to 6.1%), and not 10% as is often stated.
Abstract: Background The population rate of familial amyotrophic lateral sclerosis (FALS) is frequently reported as 10%. However, a systematic review and meta-analysis of the true population based frequency of FALS has never been performed. Method A Medline literature review identified all original articles reporting a rate of FALS. Studies were grouped according to the type of data presented and examined for sources of case ascertainment. A systematic review and meta-analysis of reported rates of FALS was then conducted to facilitate comparison between studies and calculate a pooled rate of FALS. Results 38 papers reported a rate of FALS. Thirty-three papers were included in analysis and the rate of FALS for all studies was 4.6% (95% CI 3.9% to 5.5%). Restricting the analysis to prospective population based registry data revealed a rate of 5.1% (95% CI 4.1% to 6.1%). The incidence of FALS was lower in southern Europe. There was no correlation between rate of FALS and reported SOD1 mutation rates. Conclusion The rate of FALS among prospective population based registries is 5.1% (CI 4.1 to 6.1%), and not 10% as is often stated. Further detailed prospective population based studies of familial ALS are required to confirm this rate.

312 citations


Authors

Showing all 20853 results

NameH-indexPapersCitations
Edward Giovannucci2061671179875
Robin M. Murray1711539116362
Mark E. Cooper1581463124887
Stephen J. O'Brien153106293025
Amartya Sen149689141907
Kevin Murphy146728120475
Peter M. Visscher143694118115
Mihai G. Netea142117086908
Kristine Yaffe13679472250
Cisca Wijmenga13666886572
David A. Jackson136109568352
Patrick F. Sullivan13359492298
Thomas N. Williams132114595109
Paul Brennan132122172748
David Taylor131246993220
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Imperial College London
209.1K papers, 9.3M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023123
2022370
20213,661
20203,353
20192,875
20182,709