scispace - formally typeset
Search or ask a question
Institution

Trinity College, Dublin

EducationDublin, Dublin, Ireland
About: Trinity College, Dublin is a education organization based out in Dublin, Dublin, Ireland. It is known for research contribution in the topics: Population & Context (language use). The organization has 20576 authors who have published 48296 publications receiving 1780313 citations.


Papers
More filters
Journal ArticleDOI
Nabila Aghanim1, Monique Arnaud2, M. Ashdown3, J. Aumont1  +291 moreInstitutions (73)
TL;DR: In this article, the authors present the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties.
Abstract: This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (l< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, n_s, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the likelihood results against specific extensions to the baseline cosmology, which are particularly sensitive to data at high multipoles. For instance, the effective number of neutrino species remains compatible with the canonical value of 3.046. For this first detailed analysis of Planck polarization spectra, we concentrate at high multipoles on the E modes, leaving the analysis of the weaker B modes to future work. At low multipoles we use temperature maps at all Planck frequencies along with a subset of polarization data. These data take advantage of Planck’s wide frequency coverage to improve the separation of CMB and foreground emission. Within the baseline ΛCDM cosmology this requires τ = 0.078 ± 0.019 for the reionization optical depth, which is significantly lower than estimates without the use of high-frequency data for explicit monitoring of dust emission. At high multipoles we detect residual systematic errors in E polarization, typically at the μK^2 level; we therefore choose to retain temperature information alone for high multipoles as the recommended baseline, in particular for testing non-minimal models. Nevertheless, the high-multipole polarization spectra from Planck are already good enough to enable a separate high-precision determination of the parameters of the ΛCDM model, showing consistency with those established independently from temperature information alone.

932 citations

Journal ArticleDOI
TL;DR: The authors employed event-related fMRI and EEG data to investigate the biological basis of cognitive control of behavior using a GO/NOGO task optimized to produce response inhibitions, frequent commission errors, and the opportunity for subsequent behavioral correction.

931 citations

Journal ArticleDOI
17 Jan 2013-Nature
TL;DR: Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway.
Abstract: Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway. Opposing roles in these changes for hypoxia-inducible factor 1α and AMP-activated protein kinase have been proposed. By contrast, anti-inflammatory cells, such as M2 macrophages, regulatory T cells and quiescent memory T cells, have lower glycolytic rates and higher levels of oxidative metabolism. Some anti-inflammatory agents might act by inducing, through activation of AMP-activated protein kinase, a state akin to pseudo-starvation. Altered metabolism may thus participate in the signal-directed programs that promote or inhibit inflammation.

926 citations

Journal ArticleDOI
TL;DR: It is demonstrated that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP).
Abstract: Few-layer black phosphorus (BP) is a new two-dimensional material which is of great interest for applications, mainly in electronics. However, its lack of environmental stability severely limits its synthesis and processing. Here we demonstrate that high-quality, few-layer BP nanosheets, with controllable size and observable photoluminescence, can be produced in large quantities by liquid phase exfoliation under ambient conditions in solvents such as N-cyclohexyl-2-pyrrolidone (CHP). Nanosheets are surprisingly stable in CHP, probably due to the solvation shell protecting the nanosheets from reacting with water or oxygen. Experiments, supported by simulations, show reactions to occur only at the nanosheet edge, with the rate and extent of the reaction dependent on the water/oxygen content. We demonstrate that liquid-exfoliated BP nanosheets are potentially useful in a range of applications from ultrafast saturable absorbers to gas sensors to fillers for composite reinforcement.

921 citations

Journal ArticleDOI
TL;DR: Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches, and validates that collaborative data analyses can readily be used across brain phenotypes and disorders.
Abstract: The profile of brain structural abnormalities in schizophrenia is still not fully understood, despite decades of research using brain scans. To validate a prospective meta-analysis approach to analyzing multicenter neuroimaging data, we analyzed brain MRI scans from 2028 schizophrenia patients and 2540 healthy controls, assessed with standardized methods at 15 centers worldwide. We identified subcortical brain volumes that differentiated patients from controls, and ranked them according to their effect sizes. Compared with healthy controls, patients with schizophrenia had smaller hippocampus (Cohen's d=-0.46), amygdala (d=-0.31), thalamus (d=-0.31), accumbens (d=-0.25) and intracranial volumes (d=-0.12), as well as larger pallidum (d=0.21) and lateral ventricle volumes (d=0.37). Putamen and pallidum volume augmentations were positively associated with duration of illness and hippocampal deficits scaled with the proportion of unmedicated patients. Worldwide cooperative analyses of brain imaging data support a profile of subcortical abnormalities in schizophrenia, which is consistent with that based on traditional meta-analytic approaches. This first ENIGMA Schizophrenia Working Group study validates that collaborative data analyses can readily be used across brain phenotypes and disorders and encourages analysis and data sharing efforts to further our understanding of severe mental illness.

919 citations


Authors

Showing all 20853 results

NameH-indexPapersCitations
Edward Giovannucci2061671179875
Robin M. Murray1711539116362
Mark E. Cooper1581463124887
Stephen J. O'Brien153106293025
Amartya Sen149689141907
Kevin Murphy146728120475
Peter M. Visscher143694118115
Mihai G. Netea142117086908
Kristine Yaffe13679472250
Cisca Wijmenga13666886572
David A. Jackson136109568352
Patrick F. Sullivan13359492298
Thomas N. Williams132114595109
Paul Brennan132122172748
David Taylor131246993220
Network Information
Related Institutions (5)
University College London
210.6K papers, 9.8M citations

94% related

University of Oxford
258.1K papers, 12.9M citations

93% related

University of Cambridge
282.2K papers, 14.4M citations

93% related

Imperial College London
209.1K papers, 9.3M citations

92% related

McGill University
162.5K papers, 6.9M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023123
2022370
20213,661
20203,353
20192,875
20182,709