scispace - formally typeset
Search or ask a question
Institution

University of Freiburg

EducationFreiburg, Baden-Württemberg, Germany
About: University of Freiburg is a education organization based out in Freiburg, Baden-Württemberg, Germany. It is known for research contribution in the topics: Population & Transplantation. The organization has 41992 authors who have published 77296 publications receiving 2896269 citations. The organization is also known as: alberto-ludoviciana & Albert-Ludwigs-Universität Freiburg.


Papers
More filters
Journal ArticleDOI
01 Mar 2006-Small
TL;DR: A brief overview of the currently studied shape-evolution mechanisms and the most prominent synthesis methods for anisotropic II-VI semiconductor nanocrystals and nanoparticles is provided to provide a fundamental understanding on how different morphologies evolve, and to function as a tool to aid in the preparation of specific nanocry crystals.
Abstract: Anisotropic II-VI semiconductor nanocrystals and nanoparticles have become important building blocks for (potential) nanotechnological applications. Even though a wide variety of differently shaped nanoparticles of this class can be prepared, the underlying mechanisms are mostly not fully understood. This Review article provides a brief overview of the currently studied shape-evolution mechanisms and the most prominent synthesis methods for such particles, with an aim to provide a fundamental understanding on how different morphologies evolve, and to function as a tool to aid in the preparation of specific nanocrystals.

367 citations

Journal ArticleDOI
TL;DR: In this paper, a general framework and examples of approaches for enhancing pollinator richness and abundance, quantity and quality of pollen on stigmas, crop yield, and farmers' profit, including some benefits detected only through longterm monitoring.
Abstract: Recent evidence highlights the value of wild-insect species richness and abundance for crop pollination worldwide. Yet, deliberate physical importation of single species (eg European honey bees) into crop fields for pollination remains the mainstream management approach, and implementation of practices to enhance crop yield (production per area) through wild insects is only just beginning. With few exceptions, studies measuring the impacts of pollinator-supporting practices on wild-insect richness and pollination service success – particularly in relation to long-term crop yield and economic profit – are rare. Here, we provide a general framework and examples of approaches for enhancing pollinator richness and abundance, quantity and quality of pollen on stigmas, crop yield, and farmers' profit, including some benefits detected only through long-term monitoring. We argue for integrating the promotion of wild-insect species richness with single-species management to benefit farmers and society.

367 citations

Journal ArticleDOI
TL;DR: For methylotrophic bacteria such as Methylobacterium extorquens, extension of the serine cycle with reactions of the ethylmalonyl-CoA pathway leads to a simplified scheme for isocitrate lyase-independent C1 assimilation.
Abstract: Fifty years ago, Kornberg and Krebs established the glyoxylate cycle as the pathway for the synthesis of cell constituents from C2-units. However, since then, many bacteria have been described that do not contain isocitrate lyase, the key enzyme of this pathway. Here, a pathway termed the ethylmalonyl-CoA pathway operating in such organisms is described. Isotopically labeled acetate and bicarbonate were transformed to ethylmalonyl-CoA by cell extracts of acetate-grown, isocitrate lyase-negative Rhodobacter sphaeroides as determined by NMR spectroscopy. Crotonyl-CoA carboxylase/reductase, catalyzing crotonyl-CoA + CO2 + NADPH → ethylmalonyl-CoA− + NADP+ was identified as the key enzyme of the ethylmalonyl-CoA pathway. The reductive carboxylation of an enoyl-thioester is a unique biochemical reaction, unprecedented in biology. The enzyme from R. sphaeroides was heterologously produced in Escherichia coli and characterized. Crotonyl-CoA carboxylase/reductase (or its gene) can be used as a marker for the presence of the ethylmalonyl-CoA pathway, which functions not only in acetyl-CoA assimilation. In Streptomyces sp., it may also supply precursors (ethylmalonyl-CoA) for antibiotic biosynthesis. For methylotrophic bacteria such as Methylobacterium extorquens, extension of the serine cycle with reactions of the ethylmalonyl-CoA pathway leads to a simplified scheme for isocitrate lyase-independent C1 assimilation.

367 citations

Journal ArticleDOI
06 Apr 2017-Nature
TL;DR: It is proposed that DHX9 acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.
Abstract: In the absence of DHX9, circular RNAs accumulate and transcription and translation are dysregulated—effects that are exacerbated by concomitant depletion of the RNA-editing enzyme ADAR. In the human genome, there are more than a million copies of the Alu transposable element. Movement of Alu elements is a common source of mutations, but as insertions usually occur in non-coding regions, they are often without discernible effect. Alu elements located near one another in an inverted orientation will form secondary structures that may affect various nuclear processes. Asifa Akhtar and colleagues find that the RNA helicase, DHX9, binds transcribed ‘IRAlus’ (inverted repeat Alu elements). In the absence of DHX9, circular RNAs accumulate, and transcription and translation are dysregulated. These effects are further exacerbated by co-depletion of DHX9 and ADAR p150, an interferon-inducible RNA modification enzyme. The authors conclude that these proteins protect against transposon insertion, which can have deleterious effects on gene expression. Transposable elements are viewed as ‘selfish genetic elements’, yet they contribute to gene regulation and genome evolution in diverse ways1. More than half of the human genome consists of transposable elements2. Alu elements belong to the short interspersed nuclear element (SINE) family of repetitive elements, and with over 1 million insertions they make up more than 10% of the human genome2. Despite their abundance and the potential evolutionary advantages they confer, Alu elements can be mutagenic to the host as they can act as splice acceptors, inhibit translation of mRNAs and cause genomic instability3. Alu elements are the main targets of the RNA-editing enzyme ADAR4 and the formation of Alu exons is suppressed by the nuclear ribonucleoprotein HNRNPC5, but the broad effect of massive secondary structures formed by inverted-repeat Alu elements on RNA processing in the nucleus remains unknown. Here we show that DHX9, an abundant6 nuclear RNA helicase7, binds specifically to inverted-repeat Alu elements that are transcribed as parts of genes. Loss of DHX9 leads to an increase in the number of circular-RNA-producing genes and amount of circular RNAs, translational repression of reporters containing inverted-repeat Alu elements, and transcriptional rewiring (the creation of mostly nonsensical novel connections between exons) of susceptible loci. Biochemical purifications of DHX9 identify the interferon-inducible isoform of ADAR (p150), but not the constitutively expressed ADAR isoform (p110), as an RNA-independent interaction partner. Co-depletion of ADAR and DHX9 augments the double-stranded RNA accumulation defects, leading to increased circular RNA production, revealing a functional link between these two enzymes. Our work uncovers an evolutionarily conserved function of DHX9. We propose that it acts as a nuclear RNA resolvase that neutralizes the immediate threat posed by transposon insertions and allows these elements to evolve as tools for the post-transcriptional regulation of gene expression.

367 citations

Journal ArticleDOI
TL;DR: In this paper, the total top-quark pair production cross section at the Tevatron and LHC was computed based on approximate NNLO results, and on the summation of threshold logarithms and Coulomb enhancements to all orders with next-to-next-toleading log-arithmic (NNLL) accuracy.

367 citations


Authors

Showing all 42309 results

NameH-indexPapersCitations
Mark Hallett1861170123741
Tadamitsu Kishimoto1811067130860
Anders Björklund16576984268
Si Xie1481575120243
Kypros H. Nicolaides147130287091
Peter J. Schwartz147647107695
Michael E. Phelps14463777797
Martin Erdmann1441562100470
Holger J. Schünemann141810113169
Maksym Titov1391573128335
Karl Jakobs138137997670
Annette Peters1381114101640
Suman Bala Beri1371608104798
Bert Sakmann13728390979
Vipin Bhatnagar1371756104163
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

96% related

Technische Universität München
123.4K papers, 4M citations

95% related

University of Zurich
124K papers, 5.3M citations

95% related

University of Bern
79.4K papers, 3.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023178
2022585
20214,552
20204,227
20193,825
20183,531