scispace - formally typeset
Search or ask a question
Institution

University of Marburg

EducationMarburg, Germany
About: University of Marburg is a education organization based out in Marburg, Germany. It is known for research contribution in the topics: Population & Gene. The organization has 23195 authors who have published 42907 publications receiving 1506069 citations. The organization is also known as: Philipps University of Marburg & Philipps-Universität.
Topics: Population, Gene, Crystal structure, Laser, Catalysis


Papers
More filters
Journal ArticleDOI
TL;DR: The enhancer‐blocking protein CTCF and, most probably, the mechanism of enhancer blocking mediated by this remarkably versatile factor are conserved from Drosophila to humans.
Abstract: Eukaryotic transcriptional regulation often involves regulatory elements separated from the cognate genes by long distances, whereas appropriately positioned insulator or enhancer-blocking elements shield promoters from illegitimate enhancer action. Four proteins have been identified in Drosophila mediating enhancer blocking—Su(Hw), Zw5, BEAF32 and GAGA factor. In vertebrates, the single protein CTCF, with 11 highly conserved zinc fingers, confers enhancer blocking in all known chromatin insulators. Here, we characterize an orthologous CTCF factor in Drosophila with a similar domain structure, binding site specificity and transcriptional repression activity as in vertebrates. In addition, we demonstrate that one of the insulators (Fab-8) in the Drosophila Abdominal-B locus mediates enhancer blocking by dCTCF. Therefore, the enhancer-blocking protein CTCF and, most probably, the mechanism of enhancer blocking mediated by this remarkably versatile factor are conserved from Drosophila to humans.

256 citations

Journal ArticleDOI
TL;DR: EphrinB3 is a bona fide alternate receptor for NiV entry, and two residues in the G–H loop of the ephrin B-class ligands are critical determinants of NiV receptor activity.
Abstract: EphrinB2 was recently discovered as a functional receptor for Nipah virus (NiV), a lethal emerging paramyxovirus. Ephrins constitute a class of homologous ligands for the Eph class of receptor tyrosine kinases and exhibit overlapping expression patterns. Thus, we examined whether other ephrins might serve as alternative receptors for NiV. Here, we show that of all known ephrins (ephrinA1–A5 and ephrinB1–B3), only the soluble Fc-fusion proteins of ephrinB3, in addition to ephrinB2, bound to soluble NiV attachment protein G (NiV-G). Soluble NiV-G bound to cell surface ephrinB3 and B2 with subnanomolar affinities (Kd = 0.58 nM and 0.06 nM for ephrinB3 and B2, respectively). Surface plasmon resonance analysis indicated that the relatively lower affinity of NiV-G for ephrinB3 was largely due to a faster off-rate (Koff = 1.94 × 10−3 s−1 versus 1.06 × 10−4 s−1 for ephrinB3 and B2, respectively). EphrinB3 was sufficient to allow for viral entry of both pseudotype and live NiV. Soluble ephrinB2 and B3 were able to compete for NiV-envelope-mediated viral entry on both ephrinB2- and B3-expressing cells, suggesting that NiV-G interacts with both ephrinB2 and B3 via an overlapping site. Mutational analysis indicated that the Leu–Trp residues in the solvent exposed G–H loop of ephrinB2 and B3 were critical determinants of NiV binding and entry. Indeed, replacement of the Tyr–Met residues in the homologous positions in ephrinB1 with Leu–Trp conferred NiV receptor activity to ephrinB1. Thus, ephrinB3 is a bona fide alternate receptor for NiV entry, and two residues in the G–H loop of the ephrin B-class ligands are critical determinants of NiV receptor activity.

256 citations

Journal ArticleDOI
TL;DR: The ICDAS-II system has demonstrated reproducibility and diagnostic accuracy for the detection of occlusal caries at varying stages of the disease process which are comparable to previously reported data using similar visual classification systems.
Abstract: Aim: The aim of this study was to assess inter- and intra-examiner reproducibility and accuracy in the detection and assessment of occlusal caries in extracted human teeth using a n

256 citations

Journal ArticleDOI
TL;DR: In addition to the currently described species, this phylogeny uncovered the novel Bradyrhizobium genospecies alpha and beta and the photosynthetic strains as independent evolutionary lineages.
Abstract: Highly diverse Bradyrhizobium strains nodulate genistoid legumes (brooms) in the Canary Islands, Morocco, Spain and the Americas. Phylogenetic analyses of ITS, atpD, glnII and recA sequences revealed that these isolates represent at least four distinct evolutionary lineages within the genus, namely Bradyrhizobium japonicum and three unnamed genospecies. DNA–DNA hybridization experiments confirmed that one of the latter represents a new taxonomic species for which the name Bradyrhizobium canariense is proposed. B. canariense populations experience homologous recombination at housekeeping loci, but are sexually isolated from sympatric B. japonicum bv. genistearum strains in soils of the Canary Islands. B. canariense strains are highly acid-tolerant, nodulate diverse legumes in the tribes Genisteae and Loteae, but not Glycine species, whereas acid-sensitive B. japonicum soybean isolates such as USDA 6T and USDA 110 do not nodulate genistoid legumes. Based on host-range experiments and phylogenetic analyses of symbiotic nifH and nodC sequences, the biovarieties genistearum and glycinearum for the genistoid legume and soybean isolates, respectively, were proposed. B. canariense bv. genistearum strains display an overlapped host range with B. japonicum bv. genistearum isolates, both sharing monophyletic nifH and nodC alleles, possibly due to the lateral transfer of a conjugative chromosomal symbiotic island across species. B. canariense is the sister species of B. japonicum, as inferred from a maximum-likelihood Bradyrhizobium species phylogeny estimated from congruent glnII+recA sequence partitions, which resolves eight species clades. In addition to the currently described species, this phylogeny uncovered the novel Bradyrhizobium genospecies alpha and beta and the photosynthetic strains as independent evolutionary lineages. The type strain for B. canariense is BTA-1T (=ATCC BAA-1002T=LMG 22265T=CFNE 1008T).

255 citations

Journal ArticleDOI
TL;DR: This review will focus on two members of the thioredoxin superfamily of proteins known to be crucial for maintaining a reduced intracellular redox state, thiOREDoxin and glutaredoxin, and their potential functions as facilitators and regulators of protein folding and chaperone activity.

255 citations


Authors

Showing all 23488 results

NameH-indexPapersCitations
John C. Morris1831441168413
Russel J. Reiter1691646121010
Martin J. Blaser147820104104
Christopher T. Walsh13981974314
Markus Cristinziani131114084538
James C. Paulson12644352152
Markus F. Neurath12493462376
Nicholas W. Wood12361466270
Florian Lang116142166496
Howard I. Maibach116182160765
Thomas G. Ksiazek11339846108
Frank Glorius11366349305
Eberhard Ritz111110961530
Manfred T. Reetz11095942941
Wolfgang H. Oertel11065351147
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

97% related

Heidelberg University
119.1K papers, 4.6M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

University of Zurich
124K papers, 5.3M citations

94% related

Radboud University Nijmegen
83K papers, 3.2M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023142
2022412
20212,104
20201,918
20191,749
20181,592