scispace - formally typeset
Search or ask a question
Institution

University of Maryland Biotechnology Institute

About: University of Maryland Biotechnology Institute is a based out in . It is known for research contribution in the topics: Gene & Population. The organization has 1565 authors who have published 2458 publications receiving 171434 citations. The organization is also known as: UMBI.


Papers
More filters
Journal ArticleDOI
21 Sep 2001-Science
TL;DR: In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials.
Abstract: The dendritic arbor of pyramidal neurons is not a monolithic structure. We show here that the excitability of terminal apical dendrites differs from that of the apical trunk. In response to fluorescence-guided focal photolysis of caged glutamate, individual terminal apical dendrites generated cadmium-sensitive all-or-none responses that were subthreshold for somatic action potentials. Calcium transients produced by all-or-none responses were not restricted to the sites of photolysis, but occurred throughout individual distal dendritic compartments, indicating that electrogenesis is mediated primarily by voltage-gated calcium channels. Compartmentalized and binary behavior of parallel-connected terminal dendrites can greatly expand the computational power of a single neuron.

194 citations

Journal ArticleDOI
TL;DR: This work shows that the Drosophila E93 gene determines the nature of a steroid-induced biological response, and proposes that the steroid induction of E93 determines a programmed cell death response during development.

193 citations

Journal ArticleDOI
TL;DR: It is shown that both AI-2 synthesis and uptake in Escherichia coli are subject to catabolite repression through the cyclic AMP (cAMP)-CRP complex, which directly stimulates transcription of the lsr (for "luxS regulated") operon and indirectly represses luxS expression.
Abstract: Bacterial autoinducer 2 (AI-2) is proposed to be an interspecies mediator of cell-cell communication that enables cells to operate at the multicellular level. Many environmental stimuli have been shown to affect the extracellular AI-2 levels, carbon sources being among the most important. In this report, we show that both AI-2 synthesis and uptake in Escherichia coli are subject to catabolite repression through the cyclic AMP (cAMP)-CRP complex, which directly stimulates transcription of the lsr (for “luxS regulated”) operon and indirectly represses luxS expression. Specifically, cAMP-CRP is shown to bind to a CRP binding site located in the upstream region of the lsr promoter and works with the LsrR repressor to regulate AI-2 uptake. The functions of the lsr operon and its regulators, LsrR and LsrK, previously reported in Salmonella enterica serovar Typhimurium, are confirmed here for E. coli. The elucidation of cAMP-CRP involvement in E. coli autoinduction impacts many areas, including the growth of E. coli in fermentation processes.

193 citations

Journal ArticleDOI
TL;DR: A metagenomic library was constructed from Chesapeake Bay virioplankton to suggest that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere.
Abstract: Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by Podoviridae.

193 citations

Journal ArticleDOI
TL;DR: A phylogeny of the arthropods was inferred from analyses of amino acid sequences derived from the nuclear genes encoding elongation factor-1 alpha and the largest subunit of RNA polymerase II using maximum-parsimony, neighbor-joining, and maximum-likelihood methods, providing support for a Hexapoda/Branchiopoda clade, thus arguing against the monophyly of the traditionally defined Atelocerata.
Abstract: A phylogeny of the arthropods was inferred from analyses of amino acid sequences derived from the nuclear genes encoding elongation factor-1 alpha and the largest subunit of RNA polymerase II using maximum-parsimony, neighbor-joining, and maximum-likelihood methods. Analyses of elongation factor-1 alpha from 17 arthropods and 4 outgroup taxa recovered many arthropod clades supported by previous morphological studies, including Diplopoda, Myriapoda, Insecta, Hexapoda, Branchiopoda (Crustacea), Araneae, Tetrapulmonata, Arachnida, Chelicerata, and Malacostraca (Crustacea). However, counter to previous studies, elongation factor-1 alpha placed Malacostraca as sister group to the other arthropods. Branchiopod crustaceans were found to be more closely related to hexapods and myriapods than to malacostracan crustaceans. Sequences for RNA polymerase II were obtained from 11 arthropod taxa and were analyzed separately and in combination with elongation factor-1 alpha. Results from these analyses were concordant with those derived from elongation factor-1 alpha alone and provided support for a Hexapoda/Branchiopoda clade, thus arguing against the monophyly of the traditionally defined Atelocerata (Hexapoda + Myriapoda).

192 citations


Authors

Showing all 1565 results

NameH-indexPapersCitations
Stanley B. Prusiner16874597528
Robert C. Gallo14582568212
Thomas J. Smith1401775113919
J. D. Hansen12297576198
Stephen Mann12066955008
Donald M. Bers11857052757
Jon Clardy11698356617
Rita R. Colwell11578155229
Joseph R. Lakowicz10485076257
Patrick M. Schlievert9044432037
Mitsuhiko Ikura8931634132
Jeremy Thorner8723429999
Lawrence E. Samelson8720927398
Jacques Ravel8632345793
W. J. Lederer7921325509
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

90% related

Scripps Research Institute
32.8K papers, 2.9M citations

90% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20214
202011
201918
201822
201724
201626