scispace - formally typeset
Search or ask a question
Institution

University of Maryland Biotechnology Institute

About: University of Maryland Biotechnology Institute is a based out in . It is known for research contribution in the topics: Gene & Population. The organization has 1565 authors who have published 2458 publications receiving 171434 citations. The organization is also known as: UMBI.


Papers
More filters
Journal ArticleDOI
TL;DR: Current knowledge about the chemical nature of the prion infectious agent is summarized, potential strategies and challenges related to the generation of prion infectivity de novo are described, new hypotheses to explain the apparently low infectivity observed in the first synthetic mammalian prions are proposed, and plausible effects of chemical modifications on prion conversion are described.

52 citations

Journal ArticleDOI
TL;DR: CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax were investigated, finding some anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns.
Abstract: There has been a long history of defining T cell epitopes to track viral immunity and to design rational vaccines, yet few data of this type exist for bacterial infections. Bacillus anthracis, the causative agent of anthrax, is both an endemic pathogen in many regions and a potential biological warfare threat. T cell immunity in naturally infected anthrax patients has not previously been characterized, which is surprising given concern about the ability of anthrax toxins to subvert or ablate adaptive immunity. We investigated CD4 T cell responses in patients from the Kayseri region of Turkey who were previously infected with cutaneous anthrax. Responses to B. anthracis protective Ag and lethal factor (LF) were investigated at the protein, domain, and epitope level. Several years after antibiotic-treated anthrax infection, strong T cell memory was detectable, with no evidence of the expected impairment in specific immunity. Although serological responses to existing anthrax vaccines focus primarily on protective Ag, the major target of T cell immunity in infected individuals and anthrax-vaccinated donors was LF, notably domain IV. Some of these anthrax epitopes showed broad binding to several HLA class alleles, but others were more constrained in their HLA binding patterns. Of specific CD4 T cell epitopes targeted within LF domain IV, one is preferentially seen in the context of bacterial infection, as opposed to vaccination, suggesting that studies of this type will be important in understanding how the human immune system confronts serious bacterial infection.

52 citations

Patent
24 Jun 1997
TL;DR: In this article, the authors present methods of treating or preventing diseases or disorders associated with hematopoietic deficiency by administration of human chorionic gonadotropin, β-human CHG, or a peptide containing a sequence of a portion of β human CHG.
Abstract: The present invention relates to methods of treating or preventing diseases or disorders associated with hematopoietic deficiency by administration of human chorionic gonadotropin, β-human chorionic gonadotropin or a peptide containing a sequence of a portion of β-human chorionic gonadotropin. The invention also relates to methods of treating or preventing diseases or disorders associated with hematopoietic deficiency by administration of hematopoietic cells, the numbers of which have been increased by contacting the cells with human chorionic gonadotropin, β-human chorionic gonadotropin or a peptide containing a sequence of a portion of β-human chorionic gonadotropin. The invention also provides assays for the utility of particular human chorionic gonadotropin preparations in the treatment or prevention of hematopoietic deficiencies or in the increasing of hematopoietic cell numbers in vitro. Pharmaceutical compositions and methods of administration of are also provided.

52 citations

Journal ArticleDOI
01 Mar 2001-Immunity
TL;DR: This study defines a superantigen recognition site for a gammadelta T cell receptor and demonstrates the differences between Vgamma2Vdelta2+ T cell recognition of superantigens and nonpeptide antigens.

52 citations

Journal ArticleDOI
TL;DR: Overall these data are consistent with the premise that fish are able to regulate protein synthesis in response to cellular stresses through phosphorylation of eIF2 alpha, and suggest that the interferon/eIF2alpha/PKR response to virus infection may be a conserved vertebrate characteristic.
Abstract: The cDNAs of rainbow trout and zebrafish eIF2alpha have been isolated and found to encode proteins of similar molecular weight and isoelectric point to the alpha-subunit of the human translational initiation factor, eIF2. The rainbow trout (36.0kDa) and zebrafish (36.2kDa) eIF2alphas share 93 and 91% identity to the human protein, respectively, and are recognized by antibodies raised to the human form. In mammals, the phosphorylation of the alpha-subunit of eIF2 plays a key role in the regulation of protein synthesis in response to a range of cellular stresses. Regions corresponding to the human phosphorylation and kinase-docking sites are identical in the proteins of both fish species, as are residues that interact with the eIF2 recycling factor, eIF2B. Moreover, both recombinant rainbow trout and zebrafish eIF2alphas can be phosphorylated in vitro by the mammalian heme-sensitive eIF2alpha-kinase, HRI/HCR, as well as the interferon-inducible, dsRNA sensitive kinase, PKR. Phosphorylation of rainbow trout and zebrafish eIF2alpha can also occur in vivo. RTG-2 and ZFL cells subjected to endoplasmic reticulum (ER) stress by treatment with the Ca(2+)-ionophore A23187 showed increased levels of eIF2alpha phosphorylation, suggesting similarity between the ER stress response in fish and other higher eukaryotes. Furthermore, RTG-2 cells responded to treatment with poly(I).poly(C) or to infection by infectious pancreatic necrosis virus, IPNV, by increasing eIF2alpha phosphorylation. These data imply that RTG-2 cells express the interferon-induced eIF2alpha-kinase, PKR and suggests that the interferon/eIF2alpha/PKR response to virus infection may be a conserved vertebrate characteristic. Overall these data are consistent with the premise that fish are able to regulate protein synthesis in response to cellular stresses through phosphorylation of eIF2alpha.

52 citations


Authors

Showing all 1565 results

NameH-indexPapersCitations
Stanley B. Prusiner16874597528
Robert C. Gallo14582568212
Thomas J. Smith1401775113919
J. D. Hansen12297576198
Stephen Mann12066955008
Donald M. Bers11857052757
Jon Clardy11698356617
Rita R. Colwell11578155229
Joseph R. Lakowicz10485076257
Patrick M. Schlievert9044432037
Mitsuhiko Ikura8931634132
Jeremy Thorner8723429999
Lawrence E. Samelson8720927398
Jacques Ravel8632345793
W. J. Lederer7921325509
Network Information
Related Institutions (5)
Laboratory of Molecular Biology
24.2K papers, 2.1M citations

90% related

Scripps Research Institute
32.8K papers, 2.9M citations

90% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

National Institutes of Health
297.8K papers, 21.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20214
202011
201918
201822
201724
201626